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In 1976, Allen Newell and Herbert Simon proposed their Physical Symbol System Hypothesis, a 
proposal generally regarded as one of the clearest statements of the presumption held by most 
artificial intelligence researchers. In their hypothesis, they stated that “A physical symbol system has 
the necessary and sufficient means for general intelligent action.” They defined “general intelligence” 
as intelligence of the same scope as human intelligence. Their suggestion was that certain kinds of 
manipulation of explicit information can be construed as intelligent behavior. 
 Long before 1976 the search had concentrated on the proper kinds of explicit representations 
and the proper kinds of manipulation of that information. (You can trace this back at least as far as 
Leibniz in the 17th century.) What  has emerged from this premise has been a flurry of successful, 
exciting starts in various areas of research. What has followed has been sad realizations that what is 
needed to extend these successes is computational power of such magnitude that it is mind boggling. 
This, the symbol manipulation approach to simulations of intelligence, now seems best suited for 
severely restricted domains (that is, expert systems). 
 Forceful explanations of the poverty of explicit symbol manipulation have been advanced. 
Apparently, it is the explicitness of both the symbols and their manipulations that is a central 
problem. Is it possible to devise artificial systems that harbor, in some fashion, implicit knowledge 
representations and manipulation? 
 One such approach involves the modeling of small biological units. This model assumes that 
simple units linked together in massively parallel architectures might be able to accomplish at least 
some of the tasks with which the symbol manipulation approach had the most difficulty, especially all 
those ambiguous tasks falling under the heading of pattern recognition. 
 The biological unit under investigation here is the neuron. What kinds of things can associations 
of simple neurons perform that the symbol manipulation model has difficulty with? For my 
experiments I have simulated a particularly straightforward “neural network” (described by J. J. 
Hopfield) and have given it the task of recognizing simple patterns. The constituents of the network 
are not biological neurons, but rather artificial neurons whose properties are much simplified from 
what is known and conjectured about biological neurons. 
 
Artificial neurons 
 
An artificial neuron is a simple device that computes an output as some function of its inputs (figure 
1). The following are some considerations, following the biological metaphor, that might be useful 
for specifying the nature of such neurons. 
 We will want to know whether upper or lower bounds should be set on the number of inputs to 
a neuron. We will also  need to specify whether these inputs are to be inhibitory or excitatory. 
Similarly, although a neuron will have only one output, it is allowed to branch off to become the 
input to an arbitrary number of other neurons. How will a neuron be designated as excitatory or 
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inhibitory? Neurophysiological evidence suggests that some neurons are excitatory to other neurons a 
short distance away, but inhibitory for neurons much farther away. 
 In an artificial neuron its inputs might be modified by some value (constant or variable) called 
an input’s weight. A neurophysiological parallel to this occurs in the occasionally changing synapse 
strengths of neural connections; some synapses can even be permanently changed. 
 An artificial neuron, like its biological counterpart, might not be allowed to “fire” until the input 
signal strength (for example, the sum of its excitations and inhibitions) reaches or passes some 
threshold. We will want to know what this threshold is, whether it should be the same for all 
neurons, and whether it is ever allowed to change (and, if so, under what conditions). 
 After “firing”, a neuron might be required to undergo a “recharging” — refractory — period, 
during which  its output would be inactive. When designing an artificial neuron, we must decide what 
this refractory period is, whether it is to be the same for all neurons, and whether it is allowed to 
change. 
 If a neuron receives input during its refractory period, or if the input has not yet passed the 
neuron’s threshold value, what happens to the input? Perhaps the input will be retained until the 
neuron is ready to deal with it, or perhaps the input will “decay” or grow weaker until used. 
 There might be an upper bound on the strength of the input, beyond which the neuron will be 
said to be saturated. Supersaturating a neuron might be one way to cause it to become inhibited or to 
shut down temporarily with “fatigue”. 
 What will be the outputs of neurons? Will they be limited to binary values (+1 and 0, or +1 and 
–1, perhaps)? Biological neurons generally distinguish their inputs by the frequency of the input 
firings. In an artificial neuron, such frequencies might be represented by means of a range of values. 
 Not only does a wide selection exist for possible neuron types, a practically infinite variety of 
ways exists for connecting neurons together — from fully connected nets (such as Hopfield nets, as 
we will see) to randomly connected nets, and from single-layered to multilayered. Nets may be 
designed to eventually reach a stable state, or to oscillate among certain states. The output of a net  
might be sent to one or a number of motor devices, or the output might simply be represented by a 
stable state of the net. The particular architecture chosen will reflect the application for which the net 
is to be used. To avoid immediate confusion and chaos when toying with the possibilities, it is 
sometimes helpful to investigate the properties of small collections of neurons and then to build 
larger structures from the smaller units. 
 

Figure 1. An artificial neuron is a device which computes an output as some function of its inputs. 

i0

i1

in

F(i0, i1, ..., in)
.
.
.



 3 

The Hopfield net 
 
A Hopfield net is a collection of artificial neurons (or nodes), each connected to all others by means of 
links (arcs). Each node also has an arc to itself. Each node computes a relatively simple function of all 
its inputs (each of which has a value of +1 or –1), then sends the result (either +1 or –1) out to all 
nodes. 
 Associated with each arc is a “weight” — a modifier that acts on values input to the node. 
Weights are symmetric, which means that the arcs are nondirectional: WEIGHT[i,j] = WEIGHT[j,i] 
for all nodes i, j. Figure 2 is a schematic representation of a possible four-node Hopfield net, with 
arbitrary values and weights. (The weight of an arc from a node to itself will be 0.) Nodes have no 
refractory periods and no inhibitory inputs and outputs. Figure 3 presents pseudo-code for the 
algorithm for a Hopfield net, and Listing One provides a complete program in C. The assignment of 
connection weights (pseudo-code Step 1, and function train()  in the listing) is a version of a 
simple learning procedure proposed by D. O. Hebb. (For variations on Hebb’s rules, see Rumelhart, 
Hinton, and McClelland, 1986.) 
 A Hopfield net begins life tabula rasa — that is, all weights are 0. Weights are established during 
the initial “training” of the net, which is accomplished by feeding the net any number of “exemplars” 
(training patterns). Each time the net is trained on a pattern, the two values from the pattern nodes at 
the end of the arc are multiplied together. Since a node’s value is either +1 or –1, the product of the 
two nodes’ values will be either +1 (if the values are the same) or –1 (if the values are different). The 
product is then added to the arc’s weight. (If the same pattern is presented to the net multiple times, 
the arcs will be weighted more and more heavily in favor of that pattern.) It is just as easy to have the 
net “forget” a training pattern: just subtract the node products from the arcs’ weights. (See function 
forget()  in the listing.) 
 Once the weights are established, they do not change (unless and until there is another training 
period), and the net is ready to receive unknown input patterns consisting of just as many elements as 
the net has nodes. (See Step 2 in the pseudo-code and function get_unknown()  in the listing.) 
Each node in the net is initialized to the corresponding value (+1 or –1) of the input pattern. The 
values are then multiplied by the arcs’ weights. A non-negative result gives a node a value of +1, and 
a negative result gives the node a value of –1. (See pseudo-code Step 3 and function relax()  in the 

Figure 2. A possible 4 node Hopfield net, with arbitrary weights. 
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listing.) All nodes continue to be updated in this manner until no changes occur, at which time the 
net is said to have converged (or “relaxed”) to a stable state. Note that convergence makes use of a 
net’s weights but does not change them. Training and convergence may be interleaved in any order. 
(You might say that training is a net’s way of being programmed, and presenting an input to the net 
is a way of running that program.) 
 It may be possible for a Hopfield net to enter oscillating states if the updating of outputs is 
carried on synchronously (that is, by calculating the output for all nodes and only then copying the 
result en masse to the inputs of all nodes). Asynchronous updating might cause the net to act in 
different ways (although perhaps not noticeably different for many cases), depending on the order of 
updating. Since the net is supposed to be a parallel machine (each node acting asynchronously in 
isolation from the others), the simulation of a Hopfield net on a serial machine would seem to favor 
a random, asynchronous updating scheme (function set_sequence() in the listing). 
 A Hopfield net has several properties to notice. It may be used as a content-addressable 
associative memory. After training, a given input will cause the net to converge toward the exemplar 
“closest” to the input pattern. “Closest” here describes the action of the net’s weights, which (by 
means of their pattern of values) constitute a kind of memory of the training exemplars. 
Metaphorically, the exemplars ennumbered in the weights represent “energy minima”, and the 
process of convergence takes the elements of the input pattern to the closest energy minimum. An 
input pattern that does not match any of the original exemplars will have a tendency to find the best 
match. 
 A Hopfield net is limited in the number of exemplars it can be expected to maintain as separate 
minima. Beyond some point, the exemplars will interfere with each other and cause a distortion in 
one or more of them, as discussed further below. Moreover, the number of arcs in a Hopfield net 
increases as the square of the number of nodes; consequently, large nets will quickly prove to be 
impractical both to construct and to simulate. 
 
Experiments with a Hopfield net 
 
For the experiments here, we will use a 48-node Hopfield net, conceptualized as a rectangular 
arrangement of eight rows of six nodes each. The purpose of this arrangement is that input and 

Given N nodes, fully connected, and M exemplars (training patterns), each 
with N elements, each of which is either on (+1) or off (–1): 
 
Step 1: Assign the connection weights. 
 For each node i ← 0 .. N – 1, 
  for each node j ← 0 .. N – 1, 
   if i = j then weight [i,j] ← 0 
   else weight [i,j] ← sum of: 
    for each exemplar e ← 0 .. N – 1, 
     exemplar[e,i] * exemplar[e,j] 
Step 2: Initialize the net with some input pattern (with N elements, each of 
which may be +1 or -1). 
 For each node i ← 0 .. N – 1, 
  output[i] ← pattern[i]. 
Step 3: “Relax” the net: iterate until there are no more changes (or until 
some maximum iterations have been done). 
 For each node i ← 0 .. N – 1, 
  temp ← sum of: 
   for each node j ← 0 .. N – 1, 
    output[i] * weight[i,j]. 
  if temp ≥ 0 then output[i] ← 1. 
  else output[i] ← -1. 
Step 4: If there are more unknown input patterns to examine, go to step 2. 
 

Figure 3. A Hopfield net algorithm. 
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output patterns may more easily be recognized by the human observer. Updating is asynchronous, 
using a random ordering fixed only once at the beginning of the program. Ten exemplar patterns are 
available. For future reference, the names of these patterns are the names of the ten digits 0…9, 
which the patterns are meant to depict (see figure 4 and function get_patterns() in the listing). 
 Figure 5 shows the results after training the net on the patterns 0, 1, and 2, and then giving the 
net the unknown input 0. Notice that the net converges at once to the pattern 0. The comment 
“Weight changes: 0” indicates that all “pixels” in the input pattern already represent an “energy 
minimum”, and consequently the net was immediately in a stable state. Similar results occur for the 
input patterns 1 and 2. That is, the net “remembered” the three training patterns perfectly. Or, rather, 
the net was able to immediately reproduce the training patterns perfectly. 
 Let us now train the net on an additional pattern, 3, and give it 0, 1, 2, and 3 as four unknown 
inputs. Figure 6 shows that the addition of the fourth exemplar caused some confusion in trying to 

Figure 4. 6 x 8 “thin” patterns. 

Figure 5. When trained on exemplars ‘0’, ‘1’, and ‘2’, the net clearly “remembers” them, because the 
unknown inputs ‘0’, ‘1’, and ‘2’ cause the net to converge immediately to the corresponding exemplars. 

Recognize this? 
  
Response: 

Weight changes: 0 

3 training exemplars: 

Recognize this? 
  
Response: 

Weight changes: 0

Recognize this? 
  
Response: 

Weight changes: 0 
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respond to the inputs. This is somewhat unexpected, because a Hopfield net with n nodes is usually 
expected to be able to differentiate at least .15n exemplars, which would be 7.2 in the case of the 48-
node net. 
 An explanation is at hand. A pattern is not simply a relative ordering of dots, because non-dots 
also account for weight changes during training. Consequently, the exemplars given to the net so far, 
consisting mostly of white space, or “off pixels”, quickly interfere with each other. The solution is to 
design exemplars that are as close as possible to having half their pixels on and half off. The 
exemplars in figure 7 are identical to the former set, except that the pixels have been “smeared” to 
the right. The ratio of pixels on to pixels off now comes much closer to 1:1, and, as the output in 
figure 8 shows, the net is now capable of handling four of the five exemplars (0, 1, 2, 3, and 4) 
without confusion. The inaccuracy in reproducing the ‘4’ is due to the similarity of some of the 
exemplars, especially 0, 3, and 5. Patterns that are carefully prepared to be distinct would improve the 
net’s performance. For example, the eight exemplars in figure 9 were recognized perfectly. 

Figure 6. When trained on exemplars ‘0’, ‘1’, ‘2’, and ‘3’, the net seems to get a bit confused. 

Recognize this? 

Response: 

Weight changes: 7 

4 training exemplars: 

Recognize this? 

Response: 

Weight changes: 9 

Figure 7. Ten “fat” training patterns whose ratio of dots to spaces approaches 1:1. These patterns will be 
used from now on. 
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 Hopfield nets are capable of classifying an input pattern as being more or less like a known 
exemplar. That is, an input pattern that does not exactly match an exemplar will call up the exemplar 
which is the nearest match. To see this in action, train the net on 0 through 4, and then give as 
unknown input patterns “noisy” variations on each of the exemplars. (A noisy variation for this 
experiment is one in which each pixel is switched from one to off, or vice-versa, with a probability of 
0.25.) Figure 10 shows that although not all patterns are recognized perfectly, the net performs fairly 
well. 
 A property that any net ought to have is the ability to degrade gracefully in the presence of 
damage, instead of winking out all at once as though the plug had been pulled. Figure 11 confirms 
the gradual degradation in performance of the simple Hopfield net when more and more arcs are cut 
(that is, their weights maintained at 0). 

Recognize this? 
  
Response: 

Weight changes: 0 

Recognize this? 
  
Response: 

Weight changes: 0 

Recognize this? 
  
Response: 

Weight changes: 0 

Recognize this? 
  
Response: 

Weight changes: 0 

Recognize this? 
  
Response: 

Weight changes: 3 

5 training exemplars: 

Figure 8. When trained on the five “fat” patterns 0 through 4, the net had trouble on only one of them. 
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Weight changes: 7 

Noisy input of ‘0’: Response: 

Weight changes: 10 

Noisy input of ‘1’: Response: 

Figure 10. Two examples of net output (trained on ‘0’ through ‘4’) when given noisy input patterns. 

Figure 9. Eight hand-crafted patterns. The 48-node Hopfield net is able to distinguish all of them without 
interference. 
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Variations on the Hopfield net 
 
It may be possible to introduce some variations to the Hopfield net without destroying its 
“Hopfieldness”. The following variations are given as suggestions easy to implement for further 
experiments. 
 Suppose each node requires a refractory period — a period of time (as measured by some 
global ticker) during which its output does not change, even though its input does. The result (where 
each node begins with an arbitrary value between 0 and the refractory period) seems to be a kind of 
slowing down of the convergence of the net, and the net converges somewhat more “carefully”. I 
have been able to give such a net the exemplars 0 through 5 (which before caused confusion) with 
somewhat less conflict among the exemplars; on occasion it was able to pick out correctly all six of 
the patterns. 

4 

0 

3 2

2

3 

Figure 11. If a single arc is cut (i.e., its weight maintained at 0), then the net can still perform well. But as 
more and more arcs are cut, the net performs less and less reliably. 

Recognize this? 
  
Response: 

Weight changes: 1 

Recognize this? 
  
Response:

Weight changes: 0 

Figure 12. When 20 arcs are broken (1.7% of the total), the net still performs well. 
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 Still another version of refraction might consist of raising the threshold from 0 (see the function 
relax() in the listing) whenever a node “fires” (output is +1). The threshold might be raised to an 
arbitrarily large number and then gradually allowed to drop back to 0. 
 Perhaps conflict among exemplars might be reduced if the input patterns were changed so as to 
“fuzzify” them a little, under the assumption that whatever conflict might exist among the exemplars 
might be spread out and therefore alleviated. Imagine, then, the normal 6×8 net along with an 
auxiliary net one-fourth the size (3×4). The regular net (a relatively fine-grain net) will be trained as 
usual, but each node in the auxiliary (coarse-grain) net will represent the logical ORing of a 2×2 area 
of pixels from each given exemplar. That is, the coarse-grain net will be trained on twelve-pixel 
patterns. Now relax the coarse-grain net, and for each of its nodes whose pixels are off, make sure 
that all four corresponding pixels in the fine-grain net are turned off. (All other pixels remain 
unaffected.) Now relax the fine-grain net. What is the result? My experiments, alas, showed no 
change whatsoever in the behavior from the original. (It would be interesting to explore the 
mathematical reasons for that.) 
 When the net is trained on exemplars, the nodes’ weights change. (The changing of the weights 
just is the learning of new patterns.) Another approach to changing weights is to introduce some kind 
of modifier (a weighting of weights, so to speak) based, say, on the “distances” of nodes from each 
other. A node far from a second will have less influence on the second than will a third, which is 
closer to the second. Perhaps the influence will approach 0 after a certain distance (and perhaps 
beyond that point a weight modifier will become inhibitory). 
 Finally, try training the net on one or more exemplars and then presenting as unknown input 
only a part of one of the exemplars. The net ought to be able to recreate the entire original exemplar. 
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Figure 13. When 70 arcs are broken (6.0% of the total), the net gets confused. 
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/* 
=========================================================== 
   HOPNET -- An experimental Hopfield net. 
 
   David B. Suits 
 
   V1.0   25 Sept. 20 a.l. 
 
=========================================================== 
*/ 
 
#include "stdio.h" 
 
#define NUM_ROWS        8       /* Conceptual rows in the net.          */ 
#define NUM_COLS        6 
#define NUM_NODES       (NUM_ROWS * NUM_COLS) 
#define MAX_ITERATIONS  8       /* Convergence (relaxation) of the net  */ 
                                /*   will stop if not stable by this    */ 
                                /*   many iterations.                   */ 
#define PIXEL           '*'     /* An "on" pixel printed to screen. An  */ 
                                /*   "off" pixel will be a space.       */ 
#define MAX_PATTERNS    10      /* Num patterns in file "PATTERNS".     */ 
#define MAX_EXEMPLARS   50      /* Max training patterns. Note that     */ 
                                /*   MAX_EXAMPLARS does not mean the    */ 
                                /*   same as MAX_PATTERNS, since a pat- */ 
                                /*   tern may be presented as an exemp- */ 
                                /*   lar multiple times. This limit is  */ 
                                /*   necessary only for defining the    */ 
                                /*   length of exname[], below.         */ 
 
int weight[NUM_NODES][NUM_NODES], 
    input[NUM_NODES],           /* Each input pattern goes here.        */ 
    output[NUM_NODES],          /* Output of the net.                   */ 
    seq[NUM_NODES],             /* Will hold random updating sequence.  */ 
    noisy,                      /* TRUE if exemplar is to be "noisy".   */ 
    num_exemplars,              /* Num training patterns actually given.*/ 
    patterns[MAX_PATTERNS][NUM_NODES};  /* Patterns read from file are  */ 
                                        /*   held in this array, just   */ 
                                        /*   to simplify access.        */ 
 
char exnames[MAX_EXEMPLARS + 1], /* String of names (1 char each) of ex-  */ 
                                 /*    emplars on which the net has been  */ 
                                 /*    trained.                           */ 
     unknown;                    /* Unknown input pattern’s name.         */ 
 
/* 
----------------------------------------------------------- 
MAIN 
----------------------------------------------------------- 
*/ 
 
main() 
{ 
  void set_sequence(), train(), initialize(), noisify(), relax(), 
       get_patterns(), forget(); 
 
  int i, j, c; 
 
    puts("\nSuits's Hopfield net experimenter.\n\n"); 
 
    get_patterns();     /* Read patterns in from file "PATTERNS".       */ 
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    set_sequences();    /* Construct a random updating sequence.        */ 
 
    for (i = 0; i < NUM_NODES; ++i)     /* All weights start at 0.      */ 
        for (j = 0; j < NUM_NODES; ++j) 
            weight[i][j] = 0; 
 
    num_exemplars = 0;  /* Net has been trained on nothing so far.      */ 
    noisy = FALSE;      /* TRUE only for noisifying an input pattern.   */ 
 
    while (1) {         /* Do forever ... */ 
        c = menu();     /* Get user's choice of actions.        */ 
 
        switch(c) { 
            case 'F' : forget();                /* Forget an exemplar.    */ 
                       break; 
            case 'N' : if (num_exemplars == 0)  /* Input a noisy pattern. */ 
                            puts("There are no exemplars!\n"); 
                       else if (get_unknown()) { 
                           noisify(); 
                           noisy = TRUE; 
                           initialize(); 
                           relax(); 
                           noisy = FALSE; 
                        } 
                        break; 
            case 'T' : train();                 /* Train on new exemplar.    */ 
                       break; 
            case 'U' : if (num_exemplars == 0)  /* Input an unknown pattern. */ 
                           puts("There are no exemplars!\n"); 
                       else if (get_unknown()) { 
                           initialize(); 
                           relax(); 
                       } 
                       break; 
            case 'Q' : exit();                  /* Quit.         */ 
 
            /* If none of the above is chosen, ignore the input. */ 
        }   /* Switch on main choice. */ 
    } 
 
} /* main() */ 
 
 
/* 
----------------------------------------------------------- 
FORGET -- "Untrain" the net on a chosen exemplar. 
----------------------------------------------------------- 
*/ 
 
void forget() 
{ 
  int c, n, p, i, j, got_it; 
 
    puts("Enter exemplar number to forget: "); 
    if ((c = getchar()) < '0' || c > '9') { 
        puts("\nInvalid!\n"); 
        return; 
    } 
 
    putchar('\n'); 
 
    /* If the named exemplar is not one of the exemplars so far 
       used, say so. Otherwise, delete each instance of its name 
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       from the list of exemplars and, for each deletion, adjust 
       the net's weights. 
    */ 
 
    p = c - '0'; 
 
    got_it = FALSE; 
 
    n = 0; 
 
    while (exname[n]) { 
        if (exname[n] == c) { 
            got_it = TRUE; 
            strcpy(exnames + n, exnames + n + 1); 
            --num_exemplars; 
 
            for (i = 0; i < NUM_NODES; ++i) 
                for (j = 0; j < NUM_NODES; ++j) 
                    if (i != j) 
                        weight[i][j] -= patterns[p][i] * patterns[p][j]; 
        } 
        else 
             ++n; 
    } 
 
    if (!got_it) 
        puts("NOT A PRESENT EXEMPLAR!\n"); 
 
} /* forget() */ 
 
 
/* 
----------------------------------------------------------- 
GET_PATTERNS  -- Read all the patterns from a disk file. The file 
                 is a straight ASCII text file, with '*' (or any other 
                 non-space printable character) for an "on pixel", 
                 and a space for an "off pixel". Each pattern must have 
                 NUM_ROWS number of lines (even if the lines are blank), 
                 but may have less than NUM_COLS columns in each line. 
                 (The end of a line will indicate that the remainder 
                 of a line has "off pixels".) 
----------------------------------------------------------- 
*/ 
 
void get_patterns() 
{ 
  int p, i, j, c; 
  FILE *fp; 
 
    if ((fp = fopen("patterns", "r")) < 1) { 
       puts("\nFile PATTERNS not found.\n"); 
       exit(1); 
    } 
 
    for (p = 0; p < MAX_PATTERNS; ++p)         /* Make all patterns blank.  */ 
         for (i = 0; i < NUM_NODES; ++i) 
             patterns[p][i] = -1; 
 
    for (p = 0; p < MAX_PATTERNS; ++p) { 
        for (i = 0; i < NUM_ROWS; ++i) { 
            for (j = 0; j < NUM_COLS; ++j) { 
                if ((c = fgetc(fp)) > ' ') 
                   patterns[p][i * NUM_COLS + j] = 1; 
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                else { 
                    if (c == 13)       /* If a CR ...                   */ 
                        c = fgetc(fp); /* ... throw away the line feed. */ 
                    if (c != ' ')      /* EOL or EOF.                   */ 
                        break; 
                } 
            } 
            if (c == EOF) 
                break; 
            while (c != 10)           /* Throw away any extra chars on line. */ 
                c = fgetc(fp); 
        } 
    } 
 
    fclose(fp); 
 
} /* get_patterns() */ 
 
 
/* 
----------------------------------------------------------- 
GET_UNKNOWN -- Get an unknown pattern for input to the net. 
----------------------------------------------------------- 
*/ 
 
int get_unknown() 
{ 
  int i, c; 
 
    puts("Enter number for unknown pattern: "); 
    if ((unknown = getchar()) < '0' || unknown > '9') { 
       puts("\nINVALID!\n"); 
       return (FALSE); 
    } 
 
    c = unknown - '0'; 
 
    for (i = 0; i < NUM_NODES; ++i) 
        input[i] = patterns[c][i]; 
    printf("\n\nT: %s  U: %c", exnames, unknown); 
 
    return (TRUE); 
 
} /* get_unknwon() */ 
 
 
/* 
----------------------------------------------------------- 
INITIALIZE -- Initialize the net with an unknown pattern. 
----------------------------------------------------------- 
*/ 
 
void initialize() 
{ 
  void show_output(); 
 
  int i; 
 
    for (i = 0; i < NUM_NODES; ++i) 
        output[i] = input[i]; 
 
    if (noisy) { 
       printf("\nTime: 0 Noisy Pattern: %c\n", unknown); 
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       show_output(); 
    } 
 
} /* initialize() */ 
 
 
/* 
----------------------------------------------------------- 
MENU -- Print a menu and return user's selection as uppercase char. 
----------------------------------------------------------- 
*/ 
 
int menu() 
{ 
  int c; 
 
    puts("\nExemplars: "); 
    if (num_exemplars == 0) 
       puts("none\n"); 
    else 
       puts("%s\n", exnames); 
 
    puts("T  Train on an exemplar.\n"); 
    puts("F  Forget an exemplar.\n"); 
    puts("U  Get an unknown input pattern and relax the net.\n"); 
    puts("N  Same as 'U' but "noisify' the input pattern first.\n"); 
    puts("Q  Quit.\n"); 
 
    puts("Choice? "); 
    c = toupper(getchar()); 
    putchar('\n'); 
    return (c); 
 
} /* menu() */ 
 
 
/* 
----------------------------------------------------------- 
NOISIFY -- If an input pattern is to be a noisy one, then flip 
           each of its "pixels" with probability of .25 
----------------------------------------------------------- 
*/ 
 
void noisify() 
{ 
  int i; 
 
    for (i = 0; i < NUM_NODES; ++i) 
        if ((rand() %4) == 0) 
           input[i] = -[input[i];    /* -1 <-> +1  */ 
 
} /* noisify() */ 
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/* 
----------------------------------------------------------- 
RELAX -- Iterate until convergence, or until a maximum number of 
            iterations have been done. 
----------------------------------------------------------- 
*/ 
 
void relax() 
{ 
  void show_output(); 
 
  int time, k, i, k, sum, changes; 
 
    time = -1;                  /* Keep track of iterations done.        */ 
 
    while (time < MAX_ITERATIONS) { 
        changes = 0;            /* Convergence reached when there are    */ 
                                /*   no changes in the net's output.     */ 
 
        for (k = 0; k < NUM_NODES; ++k) { 
            i = seq[k];         /* Pick a node. */ 
            sum = 0;            /* Sum all weighted inputs to this node. */ 
 
            for (j = 0; j < NUM_NODES; ++j) 
                sum += weight[i][j] * output[j]; 
 
            if (sum >= 0)       /* Threshold is 0, and node output is    */ 
                sum = 1;        /*    +1 (on) or -1 (off).               */ 
            else 
                sum = -1; 
 
            if (sum != output[i])  /* Different from previous output? */ 
                ++changes; 
            output[i] = sum;       /* New output. */ 
        } 
 
        printf("\nTime: %d  Changes: %d\n", time, changes); 
        show_output(); 
 
        if (changes == 0) 
           break; 
 
        ++time; 
    } 
 
} /* relax() */ 
 
 
/* 
----------------------------------------------------------- 
SET_SEQUENCE -- Construct a random sequences for updating the nodes. 
----------------------------------------------------------- 
*/ 
 
void set_sequence() 
{ 
  int i, j, temp; 
 
    for (i = 0; i < NUM_NODES; ++i) { 
        j = rand() % NUM_NODES; 
        temp = seq[j]; 
        seq[j] = seq[i]; 
        seq[i] = temp; 
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    } 
 
} /* set_sequence() */ 
 
 
/* 
----------------------------------------------------------- 
SHOW_OUTPUT -- Draw the matrix to show the net's latest output. 
----------------------------------------------------------- 
*/ 
 
void show_output() 
{ 
  int i, j; 
 
    for (i = 0; i < NUM_COLS + 2; ++i)  /* Top border.         */ 
        puts("+ "); 
    putchar('\n'); 
 
    for (i = 0; i < NUM_ROWS; ++i) { 
        puts("+ ");                     /* Left border.        */ 
 
        for (j = 0; j < NUM_COLS; ++j) { 
            if (output[i * NUM_COLS + j] == 1) 
               putchar(PIXEL); 
            else 
               putchar(' '); 
            putchar(' '); 
        } 
 
        puts("+\n");                    /* Right border.       */ 
    } 
 
    for (i = 0; i < NUM_COLS + 2; ++i)      /* Bottom border.      */ 
        puts("+ "); 
 
    putchar('\n'); 
 
} /* show_output() */ 
 
 
/* 
----------------------------------------------------------- 
TRAIN -- Modify the net's weights according to a new training 
         pattern (exemplar). 
----------------------------------------------------------- 
*/ 
 
void train() 
{ 
  int c, i, j; 
 
    if (num_exemplars >= MAX_EXEMPLARS) { 
        puts("NO ROOM FOR MORE EXEMPLARS!\n"); 
        return; 
    } 
 
    puts("Enter pattern number for new exemplar: "); 
    if ((c = getchar()) < '0' || c> '9') { 
        puts("\nINVALID!\n"); 
        return; 
    } 
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    putchar('\n'); 
 
    exnames[num_exemplars++] = c; 
    exnames[num_exemplars] = '\0'; 
 
    c = c - '0'; 
 
    for (i = 0; i < NUM_NODES; ++i) 
        for (j = 0; j < NUM_NODES; ++j) 
 
            if (i != j) 
               weight[i][j] += patterns[c][i] * patterns[c][j]; 
 
} /* train() */ 
 
/* 
=========================================================== 
End of HOPNET 
=========================================================== 
*/ 
 


