
 1

Playing With Mazes

David B. Suits

Department of Philosophy
Rochester Institute of Technology

Rochester NY 14623

Copyright © 1994 David B. Suits

1. What is a Maze?

 A maze or labyrinth is a network of pas-
sages, usually intricate and confusing. What
counts as intricate and confusing depends, of
course, on the mind of the beholder. For most of
this paper I shall be concerned with artificial be-
holders, namely, computers, and how algorithms
and data structures can be specified for the auto-
mated construction and solving of mazes. For this
reason, the mazes to be studied need not be par-
ticularly complex by human standards; I shall be
investigating generalized principles which will
apply to any degree of complexity of mazes — or,
rather, of certain subclasses of mazes. Most of the
presentation will be non-formal, as befits the sub-
ject matter.
 The intersection of two passages will be
called a cell (or room) of a maze such that there is
a pathway from one passage to the other via that
intersection. A maze is planar if it is constructable
on a (two dimensional) surface such that passages
do not cross except at such intersections. Non-
planar mazes would be three (or higher) dimen-
sional networks of passages and rooms.
 The principles of maze construction and so-
lution do not change for higher dimensional
mazes, and so, for the sake of clarity and ease of
drawing diagrams, I shall confine my attention to
planar mazes only.
 A passage may have a “cost” associated with
it, perhaps in terms of the length of the passage,
or in terms of hazards, or in terms of tiny trolls
who threaten the traveler with unhappy conse-
quences if some suitable tribute is not paid. Or
sometimes even if it is paid. A system of roads in
a city might be representable as a maze (though
not necessarily planar). So might the playing field

Figure 2. The floor plan of my grandparents’ house, roughly as I
conceived it as a child. (It bears little resemblance to the actual
floor plan.)

Figure 1. A fictitious maze in the courtyard of Mon, the ficti-
tious emperor of the fictitious realm of D-D, described in a

fictitious science fiction novel. The big circle is the peanut
gallery.

Suits, “Playing with Mazes” 2

of a pinball machine, the stacks in a library, a bu-
reaucracy, a judicial system, a flow chart for a
computer program, a crosswords puzzle, or the
circulatory system of a door mouse.
 The pictorial presentation of a maze might
take different forms: the cells and passages might
be explicitly drawn (figure 1); the passages might
be of length zero, so that adjacent cells have doors
and walls (or open and closed doors) (figure 2); or
the cells might be of zero size, existing only con-
ceptually at the intersections of passages (figure
3); finally, any maze may be represented ab-
stractly as a graph, with nodes (vertices) and arcs
(edges) (figure 4).
 I shall be concerned in this paper only with

mazes of the second type, which I shall call regu-

lar floor plan (RFP) mazes, and which are a sub-
set of mazes representable as graphs. Somehow,
RFP mazes seem to me to be “traditional” in a
way the others are not; but this may be only a
childhood prejudice. In any case, it will simplify
some of the discussions; they represent a class of
mazes of potentially great complexity; and they
are easy to present on a computer screen or
printer.
 The limitations of RFP mazes are obvious
once they are compared with graphs. For exam-
ple, from one of the nodes in figure 4 there is a
passage leading back to the same node. This is not
explicitly representable in RFP mazes (except by
convention: a maze traveler may move from his
present cell immediately to his present cell simply
by staying put). Second, graphs may have any
number of edges (passages) leading out of or into
a node, whereas RFP mazes have no more than
four passages (i.e., four immediately accessible
neighbors). Third, a graph may be directed, such
that the passages are one-way only. (RFP mazes
might, correspondingly, have “one-way doors”
between cells.) Since any maze, including RFP
mazes, may be represented as graphs, various
theorems from graph theory may be applied to
the construction and solution of RFP mazes.
 RFP mazes may be either closed or open. An
open maze has an entrance from the outside
and/or an exit to the outside, as shown in figure
5. In a closed maze, however, one of the cells
might be designated the start cell, and one (or
more) of the cells might be designated the goal
cell, as in figure 6. Any open maze may be
enlarged so as to become a closed maze which
now includes the “entrance” cell and the “exit”
cell (figure 7). Closed mazes being the more gen-
eral variety, our attention will be focused pri-
marily on closed mazes.

Figure 3. A real maze. A 13th century labyrinth at Chartres
cathredral.

Figure 4. A real abstract maze.

Suits, “Playing with Mazes” 3

S

G

Figure 6. A closed RFP maze. Find a path from the interior start
cell, S, to the interior goal cell, G.

(a)

(b)

(c)









S

G

Figure 5. An open maze. (a) Find a path from the entrance
to the exit. (b) Find a path from the start cell (inside the

maze) to the exit. (I.e., escape from the maze.) (c) Find a
path from the entrance to the goal cell (inside the maze).
I.e., find the treasure (and possibly find your way back

out).

S

G

(b)(a)





Figure 7. (a) An open maze. (b) A closed maze constructed by

enlarging the open maze in (a).

Suits, “Playing with Mazes” 4

2. Maze Construction

 A maze is said to be connected if there is a
path from any cell to any other cell. We want all
mazes (which, henceforth, shall be only closed,
RFP mazes) to be connected so that any two cells
may be designated the start and goal cells with
the guarantee that the maze is solvable. How can
this guarantee be obtained? The algorithm to solve
a maze — to find a path from the start cell to the
goal cell — would be inefficient to construct a
maze. For suppose we have some random maze,
i.e., each side of each cell in the maze has
randomly either a door or a wall, with the
provision that neighboring cells have their
adjacent sides the same type — both doors or both
walls. (We will also assume in all of our
discussions — unless otherwise indicated — that
the exterior sides of the border cells of the maze
are always to be walls. This is only another way of
saying that the maze is closed.) Such a maze is of
course easily constructed. Now, a maze solving
algorithm will work only if there really is a
solution path. Consequently, if the algorithm
reports failure, we know that the maze is
unconnected. In that case, we may remove a wall
at random and run the algorithm again. And we
continue removing walls until the algorithm
reports success, which it will eventually do. But
even given a solution path in the maze, we still
have no guarantee that it is a connected maze,
which requires a path from any start cell to any
goal cell. We seek, therefore, a more efficient
algorithm. The following are only some of the
possible methods.

2.1 The Spanning Tree Algorithm

1. Choose the size (width and height) of the
maze, and make it fully unconnected, i.e.,
no doors in the maze. Mark all cells as un-
visited.

2. Choose a cell at random and call it the
present cell, and mark it as visited (i.e.,
part of the tree).

3. For each neighbor (up to four of them) of
the present cell, if it is marked as un-
visited, mark it as frontier.

4. Choose any frontier cell in the maze at
random and make it the present cell; con-
nect it to any (random) neighbor marked
visited. (Step 3 guarantees that every fron-
tier cell will have at least one visited
neighbor; and it is possible that repeated
applications of step 3 might have created
frontier cells with more than one visited
neighbor.) If there are no frontier cells in
the maze, go to step 6.

5. Mark the present cell as visited, and go to
step 3.

6. The maze is now connected.

 The spanning tree algorithm will generate a
singly connected maze, that is, a maze with one
and only one path from any cell to any other cell.
(See figure 8.) Sometimes, however, it may be
required to construct a maze with multiple paths
between cells. In that case, take the connected
maze and randomly remove a few walls (except
for exterior walls). The resulting maze will be
multiply connected.

2.2 Anderson’s Algorithm

 Peter Anderson (Dept. of Computer Science,
Rochester Institute of Technology) suggested to
me the following method of maze construction. It
is basically the spanning tree algorithm, but its
function is not to connect unconnected cells, but
rather to “grow” a set of walls which, when com-
plete, will result in a connected maze.

1. Begin with a maximally connected maze,
i.e., a maze with no walls (except, of
course, along the exterior of the maze).

2. Randomly pick any cell corner to which
no wall is attached. If there is no such cor-
ner, stop; the maze is finished.

3. If possible, construct a wall from that cor-
ner to a randomly chosen neighboring
corner, provided the neighboring corner is
part of a wall. (I.e., connect a new wall to
an already existing wall.)

4. Go to step 2.

Suits, “Playing with Mazes” 5

(a) (b)

(c) (d)

Figure 9. A maze being constructed by Anderson’s
algorithm. (a) After the first time through step 2. (b) After
the first time through step 3. (c) After the second time

through step 3. (d) After the third time through step 3.

Figure 9 shows a five by five cell maze in the pro-
cess of construction according to Anderson’s algo-
rithm.
 As in the spanning tree algorithm,
Anderson’s algorithm generates a singly con-
nected maze. Multiple connections may be
formed, as before, by randomly removing some
walls. (An option is to add step 1.5: Randomly
choose any door and make it a wall. It is possible
— but not likely — that if that initial wall is not
connected to the maze border, then the resulting
maze might be multiply connected, namely, by
having a complete path around the interior of the
outside border of the maze.)

2.3 Manipulating a Connection Matrix

 A connection matrix is a two dimensional
array indicating which cells are connected to
which other cells. Figure 10b, for example, is the
connection matrix for the maze in figure 10a. An
entry of “1” indicates a door between the cells
whose numbers appear at the left column and the
top row. Each cell is trivially connected to itself. Is
there some way to manipulate a connection
matrix so that it will eventually represent a
connected maze? That is, are there properties of
connection matrices which are necessary and
sufficient for the representation of connected
mazes? There certainly are a few necessary
conditions which we may notice at once: (1) The

matrix must be symmetrical about the main
diagonal. (This is not necessary for mazes with
one-way doors.) (2) Every row must have at least
two “1” entries (i.e., each cell must be connected
to at least one cell other than itself.) Hence,
because of the symmetry, each column must have
at least two “1” entries. (3) Some connections are
impossible (for RFP mazes), as shown by the
shaded areas in figure 11.
 Unfortunately, those three conditions are not
by themselves sufficient to guarantee a connected
maze, and it seems unlikely to be able easily to
deduce the missing conditions. That is, a random
placement of “1” entries in the matrix according
to the three conditions will not guarantee a con-
nected maze.

(a) 1 2 3

 4 5 6

 7 8 9

(b) 1 2 3 4 5 6 7 8 9

 1 1 0 0 1 0 0 0 0 0

 2 0 1 1 0 0 0 0 0 0

 3 0 1 1 0 0 1 0 0 0

 4 1 0 0 1 1 0 1 0 0

 5 0 0 0 1 1 0 0 1 0

 6 0 0 1 0 0 1 0 0 1

 7 0 0 0 1 0 0 1 0 0

 8 0 0 0 0 1 0 0 1 1

 9 0 0 0 0 0 1 0 1 1

Figure 10. (a) A 33 maze. (b) The connection matrix for

the maze in (a).

(a) f (b) f

 f P f f V P

 f f

(c) f f (d) f

 f V P f f V V f

 f f f P f

 f

Figure 8. A maze being constructed by the Spanning Tree
Algorithm. “P” represents the present cell, “f” indicates the

frontier cells, and “V” represents visited cells, i.e., cells in
the solution path. (a) After step 2. (b) After the first time
through step 4. (c) After the second time through step 3. (d)

After the third time through step 3.

Suits, “Playing with Mazes” 6

 One reason for that is that each entry in the
matrix represents where a maze traveler could go
in one move, and the three conditions above tell us
only that a traveler could go somewhere in one
move. What we need, then, is a matrix telling us
where a traveler could go in n moves, where n is
the longest of all the longest paths from each cell
to every other cell, which is to say that n is equal
to one less than the number of cells in the maze.
 More information is possible if the matrix is
multiplied by itself. Let M1 be the name of the

connection matrix, and let M2 = M1  M1. Then
each entry in M2 will indicate the number of paths
of two moves from a given cell to all others. Here’s
why: Figure 12 shows the multiplication of two
matrices, A and B, yielding the new matrix C. No-
tice that the subscripts on each element of each
maze indicate two cells which are being exam-
ined, and the value of the element is the number
of ways to get from the first cell (aij) to the second
(bij) in one step (that is, both A and B represent
M1). Let’s take a look at one of the entries in C, say

c12. The element a11 is the number of ways to get
from cell 1 to cell 1 in one step (and so its value is
1 — i.e., the maze traveler might stay put, as men-
tioned before). The element b12 is the number of
ways to get from cell 1 to cell 2 in one step (and
the value is 1, because cell 1 is connected to cell 2).
We must add to that the product of a12 (the num-
ber of ways to get from cell 1 to cell 2 in one step)
with b22 (the number of ways to get from cell 2 to
cell 2 in one step) and the product of a13 (the num-
ber of ways to get from cell 1 to cell 3 in one step)
with b32 (the number of ways to get from cell 3 to
cell 2 in one step). The result is therefore the num-
ber of ways to get from cell 1 to cell 2 in two steps.
An inspection of the M2 matrix for the maze in
figure 13 will serve to illustrate the result.
 Now if we multiply M2 by M1, we shall get
M3, representing the number of ways to get from
each cell to all others in three steps. Continuing in
this fashion, we will eventually obtain M8, which
will represent the number of ways to get from
each cell of every other cell in 8 steps. For the
maze in figure 13, there are 9 cells in the maze,
and so 8 steps ought to be sufficient to get from
any cell to any other cell, provided the maze is
connected. Consequently, if every entry in M8 is
non-zero, the maze is connected, as is the case for
the maze in figure 13.

(a) 1 2 3

 4 5 6

 7 8 9

(b) 1 2 3 4 5 6 7 8 9

 1 1

 2 1

 3 1

 4 1

 5 1

 6 1

 7 1

 8 1

 9 1

Figure 11. (a) A 33 maze; the interior walls have not yet
been added. (b) The beginning of a connection matrix for

the maze in (a). Shaded areas represent impossible

connections for RFP mazes.

 a11 a12 a13 b11 b12 b13

 a21 a22 a23  b21 b22 b23 =
 a31 a32 a33 b31 b32 b33

 c11 = a11 b11 + a12 b21 + a13 b31 c12 = a11 b12 + a12 b22 + a13 b32 c13 = a11 b13 + a12 b23 + a13 b33

 c21 = a21 b11 + a22 b21 + a23 b31 c22 = a21 b12 + a22 b22 + a23 b32 c23 = a21 b13 + a22 b23 + a23 b33

 c31 = a31 b11 + a32 b21 + a33 b31 c32 = a31 b12 + a32 b22 + a33 b32 c33 = a31 b13 + a32 b23 + a33 b33

Figure 12. The general form of matrix multiplication.

Suits, “Playing with Mazes” 7

 If, however, M8 tells us that the maze is not
connected (see the example in figure 14), then we
can do something reasonable to make it con-
nected. An unconnected maze is one wherein
there are two or more regions (of one or more
cells each) which are inaccessible from each other.
Choose any two neighboring cells in the maze
whose entry in M8 is zero. These will be neighbors
on either side of the border between two such mu-
tually inaccessible regions. Change the maze so

that the two cells (and hence the two previously
unconnected regions) are now connected. Com-
pute M8 again. Continue the process until every
entry in M8 is non-zero. Actually, it might not be
necessary to compute M8 if all entries in some Mi,
i < 8, are non-zero. (See M7 in figure 13d.) To gen-
eralize, if n is the number of cells in a maze, then

the maze is connected if there is some i  n–1 such
that all of the entries in Mi are non-zero. Such an
Mi we will call the complete connection matrix

(a) 1 2 3

 4 5 6

 7 8 9

(b) 1 2 3 4 5 6 7 8 9

 1 1 1 0 0 0 0 0 0 0

 2 1 1 1 0 0 0 0 0 0

 3 0 1 1 0 0 1 0 0 0

 4 0 0 0 1 1 0 1 0 0

 5 0 0 0 1 1 1 0 0 0

 6 0 0 1 0 1 1 0 0 1

 7 0 0 0 1 0 0 1 1 0

 8 0 0 0 0 0 0 1 1 0

 9 0 0 0 0 0 1 0 0 1

(c) 1 2 3 4 5 6 7 8 9

 1 2 2 1 0 0 0 0 0 0

 2 2 3 2 0 0 1 0 0 0

 3 1 2 3 0 1 2 0 0 1

 4 0 0 0 3 2 1 2 1 0

 5 0 0 1 2 3 2 1 0 1

 6 0 1 2 1 2 4 0 0 2

 7 0 0 0 2 1 0 3 2 0

 8 0 0 0 1 0 0 2 2 0

 9 0 0 1 0 1 2 0 0 2

(d) 1 2 3 4 5 6 7 8 9

 1 127 197 196 28 77 161 7 1 70

 2 197 323 358 84 189 343 29 7 161

 3 196 358 470 190 350 547 84 28 273

 4 28 84 190 393 385 350 330 189 162

 5 77 189 350 385 477 548 266 134 273

 6 161 343 547 350 548 750 189 77 386

 7 7 29 84 330 266 189 316 196 77

 8 1 7 28 189 134 77 196 127 27

 9 70 161 273 162 273 386 77 27 204

(e) 1 2 3 4 5 6 7 8 9

 1 324 520 554 112 266 504 36 8 231

 2 520 878 1024 302 616 1051 120 36 504

 3 554 1024 1375 624 1087 1640 320 112 820

 4 112 302 624 1108 1128 1087 912 519 512

 5 266 616 1087 1128 1410 1648 785 400 821

 6 5041 1051 1640 1087 1648 2231 616 266 1136

 7 36 120 302 912 785 616 842 512 266

 8 8 36 112 519 400 266 512 323 104

 9 231 504 820 512 821 1136 266 104 590

Figure 13. (a) A 33 maze. (b) M1 for the maze. (c) M2 for the maze. (d) M7 for the maze. (e) M8 for the maze.

Suits, “Playing with Mazes” 8

and denote by Mc. Matrices derived from Mc will
be used later in Section 4.

3. Solving Mazes

 Once a maze is known to be connected, there
are probably countless methods of automating a
solution. I shall present some simple methods and
some complex methods.

3.1 Random Walk

 Beginning in the start cell, a random walk
from cell to cell could eventually lead to the goal
cell. If directions are chosen pseudo-randomly
such that the distribution of choices in the long

run covers all possibilities, then of course the goal
cell will eventually be reached. Obviously,
though, this method is better thought of as a non-
method.

3.2 The Left- (or Right-) Hand Walk

 Starting at the start cell, keep your left (or
right) hand touching a wall. Walk. Eventually
(with certain kinds of mazes) you will reach the
goal cell. The maze in figure 13 is amenable to this
solution, but the maze in figure 15 is not. The rea-
son is that the maze in figure 15 has multiple
paths between some cells (it is multiply con-
nected). Suppose cell 5 is the start cell and cell 9 is
the goal cell. A left-hand walk starting in cell 5
and facing east (or a right-hand walk starting in
cell 5 facing west) will consist of an infinite loop

(a) 1 2 3

 4 5 6

 7 8 9

(b) 1 2 3 4 5 6 7 8 9

 1 1 1 0 0 0 0 0 0 0

 2 1 1 1 0 0 0 0 0 0

 3 0 1 1 0 0 1 0 0 0

 4 0 0 0 1 1 0 1 0 0

 5 0 0 0 1 1 0 0 0 0

 6 0 0 1 0 0 1 0 0 1

 7 0 0 0 1 0 0 1 1 0

 8 0 0 0 0 0 0 1 1 0

 9 0 0 0 0 0 1 0 0 1

(c) 1 2 3 4 5 6 7 8 9

 1 2 2 1 0 0 0 0 0 0

 2 2 3 2 0 0 1 0 0 0

 3 1 2 3 0 0 2 0 0 1

 4 0 0 0 3 2 0 2 1 0

 5 0 0 0 2 0 0 1 0 0

 6 0 1 2 0 0 3 0 0 2

 7 0 0 0 2 1 0 3 2 0

 8 0 0 0 1 0 0 2 2 0

 9 0 0 1 0 0 2 0 0 2

(d) 1 2 3 4 5 6 7 8 9

 1 323 512 517 0 0 384 0 0 195

 2 512 840 896 0 0 712 0 0 384

 3 517 896 1035 0 0 6 0 0 3

 4 0 0 0 7 5 0 6 3 0

 5 0 0 0 5 4 0 3 1 0

 6 1 3 6 0 0 7 0 0 5

 7 0 0 0 6 3 0 7 5 0

 8 0 0 0 3 1 0 5 4 0

 9 0 1 3 0 0 5 0 0 4

Figure 14. (a) The same maze as in figure 13a, but with a wall between cells 5 and 6, making the maze unconnected. (b) M1 for
the maze. (c) M2 for the maze. (d) M8 for the maze.

Suits, “Playing with Mazes” 9

traversing cells 5, 6, 3, 2, 1 and 4. Cells 7, 8 and 9
will never be visited. A left-hand walk beginning
at cell 5 but facing west, or a right-hand walk be-
ginning in cell 5 facing east, will, however, find a
solution.
 An improvement on this method is to keep
track of cells visited. If you return to a visited cell,
there is a loop, and to break out of it, switch from
a left- (right-) hand walk to a right- (left-) hand
walk. This method will solve the maze in figure
15.

1 2 3

4 5 6

7 8 9

Figure 15. A multiply connected maze which cannot
necessarily be solved by a left-hand or right-hand walk.

 But both the simple and improved versions
of this method will fail to solve mazes where the
goal cell is a “King’s chamber”, i.e., a cell none of
chose corners is part of a wall. Such a maze is
shown in figure 16.

S

 G

Figure 16. The left-hand or right-hand walk does not guarantee

a solution to a maze which the goal cell is a “King’s Chamber”.

3.3 Least Recently Used Walk

 A simple (but not speedy) algorithm which
guarantees the solution of any maze extends the
idea of marking the cells in order to take note of
revisits. But in this case it is the doors, and not the
cells themselves, which are marked, and the goal
cell is (eventually) discovered by exiting whatever
cell you are in through the least recently used
door.

1. Mark all doors with “0”.

2. Set i  0.
3. If the present cell is the goal cell, stop.

4. i  i + 1.

5. Choose the door with the lowest number.
(If more than one door has the same low-
est number, randomly choose between
them.)

6. Mark the door as i, and exit through that
door.

7. In the neighboring cell, mark the door
through which you came as i.

8. Go to step 3.

 In case the maze is so large that an auto-
mated solution requires numbers larger than the
representative power of the machine being used,
it may help to realize that it is not necessary to in-
crement i in the manner given in the algorithm
above. Rather, i need be set only to one more than
the highest number in the present cell. So for step
7 we could substitute:

7'. In the neighboring cell, set i to the highest
number in the cell + 1, and mark the
door through which you came as i.

Even smaller numbers can be maintained by any
simple scheme (not to be detailed here) which al-
ways renumbers the doors of a cell just entered
from 0 (least recently used) incrementally to most
recently used (i.e., the door you just came
through). I mention this possibility only because
such simplifying measures were necessary for a
version of this algorithm which I implemented on
a small, programmable calculator (a TI-58, circa
1977).
 The main virtue of the Least Recently Used
algorithm is that its memory requirements are
minimal. The main vice of the algorithm is that
since many cells might be visited many times, its
time requirements can be huge. Another virtue of
the method is that once a path from the start to
the goal has been achieved, a path back to the
start cell is available by going through doors with
the highest value (not counting the door through
which you entered the present cell). But another
vice of the algorithm is that it does not guarantee
to find the shortest path to the goal cell; indeed, it
does not necessarily find all paths to the goal cell,
so that even if you were able to pick the shortest
of the paths traversed, there might be even shorter
paths not yet investigated.
 Pruning algorithms may be added to this
(and to most any other) solution algorithm. For
example, a cul-de-sac, once discovered, might be
specially marked (say, with a negative number) so

Suits, “Playing with Mazes” 10

that it is henceforth no longer used. By this means,
a tunnel (a string of one or more cells with exactly
two doors) which leads into a cul-de-sac will itself
be incrementally closed off. That having been
done, a solution path can be more efficient. Some-
times a loop can be discovered and marked so
that it will not be traversed again. But this re-
quires significantly more memory resources (and
a little bit more time en route) to manage, and so I
will not discuss such methods here. (See, for ex-
ample, Allen 1979.)

3.4 Breadth-First Search

 The breadth-first search algorithm labels
cells (not their doors), searching from the start cell
to all its immediate neighbors. If the goal cell is
not found, the search is performed outward to the
neighbors of each of the neighbors of the start cell;
and so on until the goal cell is found. The algo-
rithm keeps track of which cells are immediate
neighbors of the start cell, and which cells are
neighbors of those immediate neighbors, etc., by
labeling each set of cells (neighbors, then neigh-
bors of neighbors, and so on) with higher and
higher numbers.

1. Label the start cell as 0.

2. i  0.
3. For each cell labeled i, label all unlabeled

adjacent cells with i + 1. (If there are no
such adjacent cells, stop; the maze is un-
connected.)

4. If any of the newly labeled cells is the goal
cell, stop; a solution path has been found.

5. i  i + 1.
6. Go to step 3.

 The results of a breadth-first search are
shown in figure 17. Notice that a solution path has
been found. (It is possible that in a multiply con-
nected maze multiple solution paths will be
marked out.) Unfortunately, such a search is best
performed in parallel; for a poor traveler trying to
find his way through the maze, the breadth first
search method would involve so much backtrack-
ing as to make the algorithm very tedious
(although perhaps not as bad as the Least Re-
cently Used Algorithm). Moreover, additional
memory is required to keep track of what “level”
of the search one is on, and, for each given cell at
the previous level, whether its immediate neigh-

bors have been labeled at the new level. In addi-
tion, the cells, once having been labeled, do not
provide a very efficient means of traveling that
same path again without going through another
breadth-first search. The labeling does, however,
provide an excellent means of returning to the
start cell from the goal cell: simply move to the
neighbor cell with the lowest number. As a bonus,
the number in a cell also tells you how many cells
remain between your present position and the
start cell. (Since breadth-first search might mark
out multiple solution paths, there could also be
multiple return paths.)
 The breadth-first search method, if started at
the goal cell in search of the start cell, will provide
a clear (and shortest) path from the start to the
goal. (Just move to that neighbor with the lower
number.) And the label in a cell will indicate the
distance to the goal. Of course, retracing one’s
path will involve as much backtracking as finding
the goal cell did in the original version.

(a)

 S

 G

(b) 1 6 5 6

 0 4

 1 2 3 6

 2 5 4 5

(c) 6 5 6

 6 4 1

 5 4 3 0

 6 3 2 1

Figure 17. (a) A 44 maze with start and goal cells. (b) The
final labelling generated by breadth-first search. (c) A

breadth-first search started from the goal cell back to the
start cell.

Suits, “Playing with Mazes” 11

3.5 Tremaux’s Algorithm

 Tremaux’s algorithm (see Even, 1979, pp.
53f) is a depth-first search used to visit all cells,
terminating in the original cell after having
examined all doors once in each direction. (The
Hopcroft-Tarjan version of depth first search is
described in Even 1979, p. 56. Variations on
Tremaux’s algorithm are given in Even 1979, pp.
66f.)

1. Make all doors unmarked.
2. Choose some cell to be p, the present cell.
3. If there are no unmarked doors, go to step

7.
4. Choose any unmarked door, mark it “E”,

and go through to the neighboring cell.
5. If this neighbor has any marked doors (i.e.,

if the cell has been visited before) mark
the door back to p with “E”, go back to p,
and go to step 3.

6. This neighbor has not been visited before.
Mark the door back to p with “R”, assign
this cell to p, and go to step 3.

7. If there is no door marked “R”, stop; we
are back in the start cell, and the whole
maze has been visited.

8. Go through the door marked “R”, assign
this new cell to p, and go to step 3.

 Figure 18 shows the progress of this algo-
rithm. If it is necessary only to find some path to
the goal cell (rather than to visit every cell), then
the following step could be substituted for step 6:

6'. Mark the door back to p with “R” and as-
sign this cell to p. If p is the goal cell, stop.
Otherwise, go to step 3.

 Tremaux’s algorithm will find the goal cell
(provided, of course, that the maze is connected),
and in addition it will provide a clear return path
to the start cell. It also has the advantage of mark-
ing each door only once, unlike the Least Recently
Used algorithm. However, it does not provide any
means of repeating the solution path, except by
once again solving the maze. But this can easily be
remedied. During the retracing, use a counter,
initialized to zero, and incremented by one each
time you follow the “R” marks to a neighboring
cell; replace the “E” on the door through which
you just came with the value of the counter. Now

a permanent path is given from the start to the
goal simply by following the numbered doors.
What’s more, the numbers on the doors will indi-
cate the number of steps necessary to get to the
goal cell. Unfortunately, if there are any “cycles”
in the maze — if, that is, it is multiply connected
— the solution path is not guaranteed to be the
shortest.
 Another variation on the original algorithm
is to include a test for the goal cell, at which time,
instead of halting or simply retracing our steps
(even with a counter), we continue the search, this
time with the help of a counter. New cells found
are incrementally marked, and during backtrack-
ing we decrement the counter. We will have to
revisit some cells in order to mark them with
counters. But when the process is complete —
when we are back in the start cell after having
visited all cells (some twice) — then each cell will
have exactly one door marked with a number in-
dicating the number of steps (through that door)
from the start to the goal. (I suspect that this path
will also be the shortest path, but a proof of that
is, as they say, left up to the reader.)

S

G

E

R

R

R R

R

R

R

R

R

R

R

R

R

E

E

E

E

E

EE

E

E

E

E

E

Figure 18. Tremaux’s algorithm at work.

Suits, “Playing with Mazes” 12

3.6 The Cheese Algorithm

 All the previous methods of solving a maze
relied on a maze traveler’s own discoveries
during movement though the maze. I suggested
earlier in the discussion of the breadth-first search
algorithm that if the search were reversed so that
investigation proceeded outward from the goal
cell, rather than outward from the start cell, then
the maze traveler would have a clearly marked
path to the goal cell. But how, in terms of a
traveler in a maze, are we to conceive of such a
backwards search from the goal? If we already

knew where the goal cell was, we wouldn’t have
to search at all.
 Suppose, however, we present the maze
problem as a simulation of two events taking
place simultaneously: the first is the traveler, try-
ing to find a solution path as usual. The second is
some kind of information from the goal cell being
broadcast outwards. Imagine, then, that in the
goal cell is a piece of cheese — perhaps Limburger
cheese — the odor of which gradually permeates
the entire maze. Naturally, the strength of the
odor in any given cell will be proportional to the

(c)  G        (d)  G       

               

                

                

                  

                

                

                  

                  

(a)  G   (b)  G   

     

        

            

               

       

      

 

Figure 19. TAR spreading throughout a maze. The cheese is in the goal cell (G). Although the TAR for each cell changed over
time, the direction of greatest TAR for each cell changed only rarely. (Arrows indicate, for each cell, the direction of greatest

aroma.)

Suits, “Playing with Mazes” 13

distance of that cell from the cheese itself. The
maze traveler (which we might as well concede is
a rat) need only stay put in the start cell (or, if the
rat is smart enough, it might initiate one of the
earlier search algorithms) until it smells the
cheese, at which time it follows the rule: proceed
in the direction of strongest cheese odor. And as
cells are gone through, they may be marked so
that retracing the path back to the start cell is
possible, and so that the path from the start to the
goal may be followed at any future time without
again having to search.
 The strength of the cheese smell can be simu-
lated by attaching a number (say between 0 and 1)
to each cell. Let us call such a number the Total
Aroma Rating, or TAR. (“TAR” is “RAT” going
backwards.) The cheese cell will have a constant
TAR of 1, and all other cells will begin with a TAR
of 0. After each unit of simulated time, the
strength of the odor in a given cell will be the re-
sult of the aroma the cell already has, minus what
it loses to all its immediate neighbors, plus what-
ever it gains from its neighbors. For the sake of
simplicity, we may say that the TAR of a cell will
be equal to the average of its own TAR plus its
neighbors’ TARs.
 Although spreading TAR is similar to a
breadth-first search from the goal to the start,
there are some differences. TARs change, whereas
in the breadth-first search, a cell once labeled re-
tains that label. And if there are cycles in the
maze, odor will spread along two paths and then
tend to disturb each other as they join up later.
The question is, will the rat be able to find the
cheese simply by following increasing TARs?
 The answer is, almost obviously, Yes. But
instead of constructing a formal proof, a simula-
tion was employed. Figure 19 shows the 9 by 9
cell test maze after a number of iterations as the
TAR activation spreads. A number of such runs
were made, with the expected results.

4. More on Connection Matrices

 A disadvantage of all the maze solving algo-
rithms is that none will mark out a path from any
cell to any other cell. That is, given the same set of
doors and walls, but a different start or goal cell,
the entire algorithm will have to be run anew.

 In section 2.2, Mc was called the complete
connection matrix, a maze’s connection to the ith

power, where 1  i  n–1 (where n is the number
of cells in the maze; hence, n–1 is the longest pos-
sible path in the maze) such that all entries in Mi
are non-zero. Not only does Mc tell us whether the
maze is connected, but it also gives us a basis for
understanding how it is connected. Specifically,
what we are looking for is a matrix which gives us
the minimum distance from any cell to any other
cell. Let Md be such a minimum distance matrix. It
will display in matrix form the structure of walls
and doors of the maze. Such information will, in
turn, provide us with a means for calculating the
path from any start cell to any goal cell. That is,
from Md we will be able to construct Msg, the so-
lution matrix for the goal cell g.

4.1 Constructing Md, the Minimum Distance Matrix

 Repeatedly running one of the maze solving
algorithms (with suitable enhancements) may
provide us with Md. But given M1, Md will be sim-
ple to calculate as we are constructing Mc. Once
an entry in some Mi becomes non-zero, we know
how many steps (namely, i) there are between the
cell in the given column and the cell in the given
row for that entry. Thus, i becomes the value for
that entry in Md. That is, for each of Mi, i = 2…c,
all non-zero entries in Mi which were 0 in Mi–1 are
assigned the value of i in Md (excluding Md

jj en-
tries — that is, the entries in the main diagonal —
which are assigned 0 in Md, since there are mini-
mally 0 steps between any cell and itself). Figure
20 repeats the maze shown earlier in figure 15,
and gives both Mc and Md.

4.2 Constructing Ms, the Solution Matrix

 Suppose, for the maze in figure 20a, that cell
1 is the goal cell. We wish to know how best to get
to that cell from wherever we are. Suppose we are
in cell 5. Consulting Md we discover that cell 1 is
two cells away. But in what direction? It is easy to
find out. From cell 5 we can move only to cell 4 or
to cell 6. (These are the entries in Md in figure 20c
indicating minimal distances of 1 from cell 5.) If
we were to move to cell 4, then cell 1, according to
Md, would be one step away; if we were to move
to cell 6, then cell 1 would be 3 steps away.
Clearly, then, we get closer to cell 1 from cell 5 by

Suits, “Playing with Mazes” 14

moving to cell 4. So the process for calculating Msg

for any g in a maze with n cells is as follows:

1. Msg
ij  –1 for all i, j (–1 simply indicates

an invalid entry).

2. For i = 1…n, i  g
For each k, k = 1…n such that Md

ik =
1 and Md

kg < Md
ig

 Ms
ik  Md

ig.

3. Ms
gg  0.

Figure 21 shows solution matrices for g = 1, 2 and
3.
 Notice that each solution matrix is equivalent
to the results of a breadth-first search initiated
from the given goal cell outwards to the rest of the
maze. Since the structure of a maze is known once
M1 is known, it is then a question of implementa-
tion-dependent efficiency whether to engage in
matrix multiplication or whether to simulate
breadth-first searches in order to create any (or
all) desired solution matrices.
 Although the solution matrix is perhaps not
very useful for the ordinary solve-a-maze puzzle,
it might be useful in certain variations. Suppose,
for example, that the rat is looking for the cheese
placed somewhere in a familiar maze. And sup-
pose the cheese has legs with which to move
away from the rat. OK, if that’s supposing too
much, then we may instead imagine a com-
puterized demon trying to catch a human player
in a maze game. As long as the demon knows the
identity to the cell its prey is presently in, it can
consult the proper Ms and make the most efficient
move towards it. In effect, the demon faces the
problem of a continuous automated solution,
where the start cell and goal cell are changing in
the same maze. Either the specific Ms is calculated
as needed, or else all of them are calculated,
stored and consulted later on as required.

4.3 Cautions

 But let’s be clear about what has been
claimed for these matrices. If you were put at the
entrance (i.e., in a start cell) of an unfamiliar maze
and told to go find the treasure and return, then
there would be nothing for it but to use a suitable
maze solving algorithm; after all, you do not yet
know the structure of the maze; and not only do
you not know how to get to the goal cell, you do
not know its identity. However, once given the
structure of the maze — after having examined it
on your first run — you can construct the
connection matrix, and hence Mc, Md and Ms. At
that point you can efficiently retrieve any further
treasure in the maze merely by being told the
identity of the cell it is in. Suppose, however, that
although you have Md, you know only that there
is a treasure somewhere in the maze. Even though
in your search for the treasure you can now be
more efficient than a traveler who knows nothing
about the structure of the maze, you will never-

(a) 1 2 3

 4 5 6

 7 8 9

(b) 1 2 3 4 5 6 7 8 9

1 56 47 35 63 40 33 35 15 10

2 47 51 47 40 32 40 17 5 16

3 35 47 56 33 40 62 10 2 30

4 63 40 33 91 64 45 61 30 17

5 40 32 40 64 61 63 35 15 30

6 33 40 62 45 63 86 18 5 46

7 35 17 10 61 35 18 51 31 5

8 15 5 2 30 15 5 31 21 1

9 10 16 30 17 30 46 5 1 26

(c) 1 2 3 4 5 6 7 8 9

1 0 1 2 1 2 3 2 3 4

2 1 0 1 2 3 2 3 4 3

3 2 1 0 3 2 1 4 5 2

4 1 2 3 0 1 2 1 2 3

5 2 3 2 1 0 1 2 3 2

6 3 2 1 2 1 0 3 4 1

7 2 3 4 1 2 3 0 1 4

8 3 4 4 2 3 4 1 0 5

9 4 3 2 3 2 1 4 5 0

Figure 20. (a) A 33 maze. (b) Mc = M5 for the maze. (c) Md for

the maze.

Suits, “Playing with Mazes” 15

theless have to employ some search procedure or
other. That is, you know how to get efficiently
from any cell to any other cell; but since you do
not know the identity of the goal cell, you will
have to search for it. That is, you face a traveling
salesman’s problem: how shall you organize your
travels along alternative but known routes in or-
der to cover all the territory while incurring the
least cost? (Cost, in this case, is distance. The least
cost will be incurred for the least backtracking.) It
is a restricted traveling salesman’s problem in that
the start cell is stipulated. I have a gut feeling that
some sort of matrix manipulation might straight-
forwardly solve this problem (would that make
me famous?), but I have no suggestions to offer at
this time. (Gut feelings are not very reliable any-
way.)

5. A Neural Net Maze Solver

 The solution methods I have discussed in-
volve putting various identifying marks in the
cells of the maze (or, what comes to the same
thing, “marking” a memory image of the maze).
The memory — the record — which helps guide
you through the maze is imprinted upon the maze
(or a copy of the maze) itself. In order to deter-
mine what to do next, at any given position, you
need only consult the marks in the present cell
and apply an appropriate rule. If there is an inde-
pendent memory in use, it is minimal: perhaps a
counter, for example.
 Imagine, however, that you are trying to
move through a maze without the benefit of being
able to leave identifying clues (or clews). Your
own memory serves only as a more or less
(un)reliable “feel” — a sense of context, perhaps,
which grows with experience of the maze. That is,
as you move through the maze you more and
more confidently identify patterns of kinds of
cells. You may learn, for example, that there is one
section of the maze with a very long corridor,
each cell of which has a door to the right leading
to a cul-de-sac. If you have knowledge of such a
corridor, then you might recognize it whenever
you move through it, and this identification might
serve adequately as a means of orientation. Such a
memory is a behavior pattern.

(a) 1 2 3 4 5 6 7 8 9

1 0 1 2 1 2 3 2 3 4

2 1 0 1 2 3 2 3 4 3

3 2 1 0 3 2 1 4 5 2

4 1 2 3 0 1 2 1 2 3

5 2 3 2 1 0 1 2 3 2

6 3 2 1 2 1 0 3 4 1

7 2 3 4 1 2 3 0 1 4

8 3 4 4 2 3 4 1 0 5

9 4 3 2 3 2 1 4 5 0

(b) 1 2 3 4 5 6 7 8 9

1 0 1 2 1 2 3 2 3 4

2 1 0 1 2 3 2 3 4 3

3 2 1 0 3 2 1 4 5 2

4 1 2 3 0 1 2 1 2 3

5 2 3 2 1 0 1 2 3 2

6 3 2 1 2 1 0 3 4 1

7 2 3 4 1 2 3 0 1 4

8 3 4 4 2 3 4 1 0 5

9 4 3 2 3 2 1 4 5 0

(c) 1 2 3 4 5 6 7 8 9

1 0 1 2 1 2 3 2 3 4

2 1 0 1 2 3 2 3 4 3

3 2 1 0 3 2 1 4 5 2

4 1 2 3 0 1 2 1 2 3

5 2 3 2 1 0 1 2 3 2

6 3 2 1 2 1 0 3 4 1

7 2 3 4 1 2 3 0 1 4

8 3 4 4 2 3 4 1 0 5

9 4 3 2 3 2 1 4 5 0

Figure 21. (a) Ms1 for the maze in fig. 20. (b) Ms2 (c) Ms3.

Suits, “Playing with Mazes” 16

 The problem now in solving a previously
learned maze under the constraint of not being
able to leave marks in the cells is to first orient
oneself. Once oriented, it is a matter of following
one’s internalized “feel” in order to remain ori-
ented.
 This is usually inherently serial. One might
not clearly anticipate the proper moves in ad-
vance; that is, you might not be able to recall, in
advance, that at a certain point you will have to
turn right. Rather, you will simply wait until the
pattern seems to emerge on its own in response to
the present context.
 An artificial neural net embodies at least
some of the properties we need in order to create
such a memory. Neural nets do not store explicit
memory images; rather, they contain a network of
interactions which, given the proper stimulation,
will recreate certain kinds of responses. We may
say that the neural net’s memory is its ability to
engage in such recreations.

 But most research on artificial neural net-
works has not focused on the time domain,
whereas I am searching for a neural net architec-
ture which will tend to serialize its recreations. I
propose a sketch of a possible neural network to
solve mazes. It is based roughly on an idea for
serial learning proposed by Jordon (1986) and
later used by Todd (1989). But whereas Jordon’s
network learned by means of back-propagation
(wherein mistakes made by the net are corrected
by an all-knowing teacher), my proposal is for a
network which teaches itself.
 Figure 22 shows the components of the net-
work. The general idea is that the network will
receive information about the type of cell it is in
(i.e., which sides of the cell have doors and which
have walls), make a decision as to the direction of
motion out of the cell (to simplify matters, I use
compass directions instead of an “egocentric” ori-
entation), and then predict the kind of cell it will
be moving into. This prediction is then compared

N E S W

Move

Decide

G

Goal

mutual weak

inhibition

strong inhibition

adjust

weight = 1

weight = 1

weight = 1

reward

Compare

T1 T2 T15. . .

Actual

T1 T2 T15. . .

Predict

T1 T2 T15. . . T1 T2 T15. . .

RAT1

MAZE

T , T , ..., T are 15 maze cell types:1 2 15 ...

Figure 22. A proposal for a maze-learning net.

Broken lines are weight adjustment lines.

1. If predicted cell type = actual cell type, certain weights are adjusted away from zero.

2. If predicted cell type  actual cell type, certain weights are adjusted toward zero.
3. If goal cell is reached, certain weights are rewarded (moved further from zero).

Suits, “Playing with Mazes” 17

to the actual cell type moved into, and on the
basis of that comparison, various of the net’s
weights will be affected. Also, if the goal cell is
ever moved into, some of the net’s weights are af-
fected. The four move nodes constitute a “winner-
take-all” subnet, activated by the “decision” sub-
net and strongly inhibited by various of the
“actual cell type” nodes in order to ensure that a
move chosen is a possible move. The move nodes
are mutually inhibitory so that as one node’s acti-
vation tends to grow, the others tend to diminish,
with the result that eventually one and only one
node will be active as the chosen direction.
 The activity of the decision subnet is fed into
the predictor subnet. Active nodes in this subnet
are taken to represent the one (or more) cell types
which the node expects to see after making the
move indicated by the active node. They also act
as a kind of “context” which is verified or falsified
by the action of weight adjustments which take
place after comparing the predictor’s predictions
with the actual new cell type. If this idea of
“context” works, then the net will choose moves
in a serial order based in some degree upon past
modes and some degree on the present situation.
That is, the net will “learn” a route from a given
start cell to a given goal cell.
 Once having learned a route, the start cell
and/or the goal cell may be changed and the net
allowed to investigate anew. The hope is that
eventually the net will have a “feel” for the entire
maze, and that it will be able roughly to orient
itself anywhere in the maze after a number of
moves.
 An interesting feature about this proposed
net is that it is given no knowledge about the size
of the maze; the net, if it works at all, will work on
different sized mazes. (There is obviously some
limit to the maze complexity of course.)
 I have been talking about the net as a pro-
posal rather than as an accomplished machine, be-
cause at this stage it is only partially imple-
mented. The basic structure of most of the nodes
has been worked out, but it will be some time be-
fore all the pieces can be put together for some
serious trials.

6. Maze Games

 So far I have been talking of mazes as mazes
— a series of paths from points to points. The se-
ries of paths may be simple or complex, but in any
case the object is to move from some given point
to some other. Although we may delight in the
cleverness of a maze (perhaps it is embedded in a
complex drawing, for example), as a puzzle or
game it is rather restricted and can quickly
become boring. If we wish to make use of the
power of a computer in constructing and ref-
ereeing maze games, we ought to look to
something other than the mere display of a maze
which we are to traverse from entry to exit.

6.1 Blind Mazes

 The first enhancement to computer maze
games is straightforward: do not represent to the
player his position relative to the rest of the maze
— or else make this information at least partly
hidden.
 Such a maze game might, for example, dis-
play the perimeter of the maze and the position of
the player inside the maze relative to the perime-
ter, but not display the individual cells within the
maze, nor, of course, the paths from cell to cell.
Such a maze we can call a blind maze. The player
specifies the direction of desired movement from
the present cell: up, right, down, or left (or else
north, east, south or west). The player is moved
accordingly if the present cell is open in the cho-
sen direction. Otherwise, the player bumps up
against a wall and remains in the present cell. (As
an option, a wall which is bumped up against
might then be displayed.) Allowing the player a
maximum number of attempts to move in order to
reach the exit cell would add an additional
challenge. By adding a computer-simulated
opponent (or by allowing for a second human
player as an opponent), the game can be made
even more challenging: one player tries to reach
the exit cell (or goal cell) within a certain time, or
within a certain number of moves; the opponent
tries to catch the player (or get to the goal cell
first). Both players move around the maze under
constraints of darkness.
 Instead of providing a “bird’s eye view” of
the maze, the player might be shown only the

Suits, “Playing with Mazes” 18

“player’s eye view”. You will see only what is di-
rectly in front of you: either a wall, or else an
opening to another cell. Only by turning around
in your cell will you be able to learn where the
cell’s exits are located. In such a case, you might
issue commands such as rotate right, rotate left, or
move forward. Whether you are moving north, east,
south or west will be known by the computer,
which will keep track of your position and orien-
tation, but can be known by you only if you keep
track for yourself. The “player’s eye view” might
be enhanced by showing a perspective view of
your position. Thus, if you are facing an exit from
the cell, you will be able to see through into the
next cell; if that cell has an opening on the facing
wall, then you will be able to see through to the
cell beyond that; and so on.
 Adding an opponent (human or computer)
who also roams the maze, will add challenge to
such a game. In fact, such a multiplayer maze
game would be a good candidate for a multi-
computer game.

6.2 Wrap-Around Mazes

 Certain very simple modifications to the
traditional maze can be implemented. Consider,
for example, the very simple maze in figure 23.
One cell (cell 4) is established as the exit cell:
moving north from that cell will constitute exiting
the maze (and, presumably, winning the game).
But in cell 9, movement is allowed only
southwards. And in cell 10 there are walls to the
east and west. Of course, there must be a wall on
the east side of cell 10, because if there were not,
then cell 10 would be the exit cell (or another exit
cell). But wait! Why must moving east from cell 10
(assuming there were an opening there) really
constitute an exit from the maze? Perhaps,
instead, we can allow the maze to “wrap around”
to the other side, such that moving east from cell
10 would put you into cell 6 (or 11). Allowing for
such a possibility immediately transforms the

very simple 55 maze into an effective 5 maze.
Allowing for wrap-around in the vertical
direction as well will transform the maze into a

 maze. If the player is given information only
about the present cell (and, perhaps, about any
cell which can be seen through an exit from the
present cell), then even a simple maze will be very
difficult to traverse, unless, by keeping careful

records, the player begins to spot a repetition of
patterns in the cells moved through.
 Such an infinite wrap-around maze is ex-
tremely easy to implement on even a very small
computer (I have put such maze games on
programmable calculators), especially where the
cells are internally represented as an ordered set
of four walls, where, say, a “1” represents a wall
and a “0” represents an opening. The computer
need only keep track of which cell the player is in
and the orientation of the player within the cell.
Thus,

 cell(i,1) = status of north side of cell i.
 cell(i,2) = status of east side of cell i.
 cell(i,3) = status of south side of cell i.
 cell(i,4) = status of west side of cell i.

To move east from cell i, then, is allowed only if
cell(i,2)=0, and a successful move then places the
player in cell i+1.

6.3 One-Way Doors

 Still another enhancement to a traditional
maze is easy to implement, and this too can make
even a small maze seem very complex, especially
when a “player’s eye view” is provided (instead
of a “bird’s eye view”).
 If each cell is represented by the status of its
four walls (say, “1” for a wall, and “0” for an
opening), then one expects that the neighboring
cell will also have a corresponding “1” or “0”. But
suppose it doesn’t. Suppose, for example, you are
in a cell whose status indicates that the north side
is an open door (“0”). Given the “player’s eye
view”, and given that you are facing north, that
means that you can look straight ahead into the

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 23. A simple 55 maze. Moving north from cell 4

will exit the maze, unless it is a wrap-around maze, in
which case moving north from cell 4 would land you in cell

24.

Suits, “Playing with Mazes” 19

next cell. Suppose you move ahead into that cell.
But suppose that the new cell’s status, instead of
indicating a “0“ for its south side (which, after all,
would make sense, since you just came in that
way), is actually “1”. This means that if you were
to turn around and face south, expecting to see
through to the cell you had just come from, you
would instead see a wall (or a closed door, or
whatever it is that the game represents as a
barrier). You have just come though a one-way
door, and this makes traditional maze search
algorithms far less useful, since, after moving
through a one-way door into a cell never visited
before, there will be no information about how to
get back to the cell you came from without
initiating a brand new search.
 Even a very small maze which wraps around
both horizontally and vertically, and which has a
few one-way doors, can be an extremely difficult
maze to solve.

6.4 Interpreted Mazes

 A puzzle or game can be modeled on a maze
without the game or puzzle seeming to be a maze.
That is to say, the game will have a maze as its
underlying structure, but the maze will not be
apparent to a player of the game; the player will
not think in terms of a maze at all.
 Such a game can be constructed by inter-
preting (or translating) the constituents of a maze
game into some other idiom. That is, being in a
cell will be represented as being in some game
situation with a number of options available (one
for each open door). To accept a particular option
is to move through the door into another cell —
into another game situation with a (possibly new)
set of options. (Or else each cell is a game, and
entry to that cell from a neighbor is allowed only
by successfully completing the game.)
 For example, instead of geometrical motion
through a maze, a game might be represented as a
series of choices for trading goods. The player is
given some object to begin with and then, for each
open door in the cell, he is offered an object in
trade. Accepting a trade which leads farther from
the goal will result in some sort of net loss (say, in
the dollar value of the item presently held),
whereas accepting a trade which brings the player
closer to the goal will result in a net gain.
Backtracking might mean having to trade back for
items previously held (presumably for a net loss).

 Another example: A maze engine might
underlie a bureaucracy game, where the goal is to
contact Mr. X. At any given time (i.e., within any
given cell) the player is allowed to contact only
certain persons in the bureaucracy (various
secretaries, undersecretaries, assistants, deputy
managers, and so on). Some contacts lead
immediately to dead-ends, i.e., closed doors in the
cell. (Perhaps there are ten unhelpful persons in
the bureau, and perhaps each of the closed doors
in each cell is presented to the player as one of
those ten chosen at random, so that very often the
player is given a choice to contact, say, Assistant
Deputy Under Secretary Smith, who turns out
always to be most unhelpful. Eventually, the
player will simply avoid bothering with Smith —
which is to say that, in terms of the underlying
maze engine, the player will have learned to
recognize one kind of closed door.)
 A maze engine might underlie instructional
games. In order to gain entrance to a cell, a player
has to successfully solve a certain kind of math
problem. Easier problems lead farther from the
goal, and harder problems lead closer to the goal.
 Or each cell might represent a word spelling
problem (or a word definition problem, or a
language translation problem), where, as in the
math game above, successfully completing easy
problems takes the player farther from the goal,
and successfully completing harder problems
brings the player closer to the goal.
 In general, each cell of the underlying maze
engine might represent some activity or other
(perhaps an entire game in itself, such as a Battle-
the-Aliens game or a chess game, or…), and the
game must be successfully completed in order to
advance (i.e., move into the next cell), at which
time another series of options is presented. And
so on until the goal cell is reached. Probably
multiply-connected mazes (i.e., mazes with more
than one path from the start cell to the goal cell)
would be appropriate for such maze engines.

Suits, “Playing with Mazes” 20

Bibliography

Allen, S. and Allen, S. A., “Simple Maze Traversal

Algorithms”, Byte, Vol. 4, No. 6 (June, 1979),
p. 36.

Even, Shimon, Graph Algorithms (Rockville, MD:
Computer Science Press, 1979).

Jordon, M. I., “Serial Order: A Parallel Distributed
Processing Approach”, Technical Report 8604.
La Jolla: University of California, San Diego,
Institute for Cognitive Science, 1986.

Todd, Peter, “A Sequential Network Design for
Musical Applications”, in D. Touretsky, G.
Hinton and T. Sejnowski, eds., Proceedings of
the 1988 Connectionist Models Summer School
(San Mateo, CA: Morgan Kaufmann Publish-
ers, Inc., 1989), pp. 76–84.

