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1. What is a Maze? 
 
 A maze or labyrinth is a network of pas-
sages, usually intricate and confusing. What 
counts as intricate and confusing depends, of 
course, on the mind of the beholder. For most of 
this paper I shall be concerned with artificial be-
holders, namely, computers, and how algorithms 
and data structures can be specified for the auto-
mated construction and solving of mazes. For this 
reason, the mazes to be studied need not be par-
ticularly complex by human standards; I shall be 
investigating generalized principles which will 
apply to any degree of complexity of mazes — or, 
rather, of certain subclasses of mazes. Most of the 
presentation will be non-formal, as befits the sub-
ject matter. 
 The intersection of two passages will be 
called a cell (or room) of a maze such that there is 
a pathway from one passage to the other via that 
intersection. A maze is planar if it is constructable 
on a (two dimensional) surface such that passages 
do not cross except at such intersections. Non-
planar mazes would be three (or higher) dimen-
sional networks of passages and rooms. 
 The principles of maze construction and so-
lution do not change for higher dimensional 
mazes, and so, for the sake of clarity and ease of 
drawing diagrams, I shall confine my attention to 
planar mazes only. 
 A passage may have a “cost” associated with 
it, perhaps in terms of the length of the passage, 
or in terms of hazards, or in terms of tiny trolls 
who threaten the traveler with unhappy conse-
quences if some suitable tribute is not paid. Or 
sometimes even if it is paid. A system of roads in 
a city might be representable as a maze (though 
not necessarily planar). So might the playing field 

 
 

Figure 2. The floor plan of my grandparents’ house, roughly as I 
conceived it as a child. (It bears little resemblance to the actual 
floor plan.) 

 
 

Figure 1. A fictitious maze in the courtyard of Mon, the ficti-
tious emperor of the fictitious realm of D-D, described in a 

fictitious science fiction novel. The big circle is the peanut 
gallery. 
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of a pinball machine, the stacks in a library, a bu-
reaucracy, a judicial system, a flow chart for a 
computer program, a crosswords puzzle, or the 
circulatory system of a door mouse. 
 The pictorial presentation of a maze might 
take different forms: the cells and passages might 
be explicitly drawn (figure 1); the passages might 
be of length zero, so that adjacent cells have doors 
and walls (or open and closed doors) (figure 2); or 
the cells might be of zero size, existing only con-
ceptually at the intersections of passages (figure 
3); finally, any maze may be represented ab-
stractly as a graph, with nodes (vertices) and arcs 
(edges) (figure 4). 
 I shall be concerned in this paper only with 

mazes of the second type, which I shall call regu-

lar floor plan (RFP) mazes, and which are a sub-
set of mazes representable as graphs. Somehow, 
RFP mazes seem to me to be “traditional” in a 
way the others are not; but this may be only a 
childhood prejudice. In any case, it will simplify 
some of the discussions; they represent a class of 
mazes of potentially great complexity; and they 
are easy to present on a computer screen or 
printer. 
 The limitations of RFP mazes are obvious 
once they are compared with graphs. For exam-
ple, from one of the nodes in figure 4 there is a 
passage leading back to the same node. This is not 
explicitly representable in RFP mazes (except by 
convention: a maze traveler may move from his 
present cell immediately to his present cell simply 
by staying put). Second, graphs may have any 
number of edges (passages) leading out of or into 
a node, whereas RFP mazes have no more than 
four passages (i.e., four immediately accessible 
neighbors). Third, a graph may be directed, such 
that the passages are one-way only. (RFP mazes 
might, correspondingly, have “one-way doors” 
between cells.) Since any maze, including RFP 
mazes, may be represented as graphs, various 
theorems from graph theory may be applied to 
the construction and solution of RFP mazes. 
 RFP mazes may be either closed or open. An 
open maze has an entrance from the outside 
and/or an exit to the outside, as shown in figure 
5. In a closed maze, however, one of the cells 
might be designated the start cell, and one (or 
more) of the cells might be designated the goal 
cell, as in figure 6. Any open maze may be 
enlarged so as to become a closed maze which 
now includes the “entrance” cell and the “exit” 
cell (figure 7). Closed mazes being the more gen-
eral variety, our attention will be focused pri-
marily on closed mazes. 
 

 
 

Figure 3. A real maze. A 13th century labyrinth at Chartres 
cathredral. 

Figure 4. A real abstract maze. 
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Figure 6. A closed RFP maze. Find a path from the interior start 
cell, S, to the interior goal cell, G. 

(a)

(b)

(c)









S

G
 

Figure 5. An open maze. (a) Find a path from the entrance 
to the exit.  (b) Find a path from the start cell (inside the 

maze) to the exit. (I.e., escape from the maze.) (c) Find a 
path from the entrance to the goal cell (inside the maze). 
I.e., find the treasure (and possibly find your way back 

out). 

S

G

(b)(a)





 
 

Figure 7. (a) An open maze. (b) A closed maze constructed by 

enlarging the open maze in (a). 
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2. Maze Construction 
 
 A maze is said to be connected if there is a 
path from any cell to any other cell. We want all 
mazes (which, henceforth, shall be only closed, 
RFP mazes) to be connected so that any two cells 
may be designated the start and goal cells with 
the guarantee that the maze is solvable. How can 
this guarantee be obtained? The algorithm to solve 
a maze — to find a path from the start cell to the 
goal cell — would be inefficient to construct a 
maze. For suppose we have some random maze, 
i.e., each side of each cell in the maze has 
randomly either a door or a wall, with the 
provision that neighboring cells have their 
adjacent sides the same type — both doors or both 
walls. (We will also assume in all of our 
discussions — unless otherwise indicated — that 
the exterior sides of the border cells of the maze 
are always to be walls. This is only another way of 
saying that the  maze is closed.) Such a maze is of 
course easily constructed. Now, a maze solving 
algorithm will work only if there really is a 
solution path. Consequently, if the algorithm 
reports failure, we know that the maze is 
unconnected. In that case, we may remove a wall 
at random and run the algorithm again. And we 
continue removing walls until the algorithm 
reports success, which it will eventually do. But 
even given a solution path in the maze, we still 
have no guarantee that it is a connected maze, 
which requires a path from any start cell to any 
goal cell. We seek, therefore, a more efficient 
algorithm. The following are only some of the 
possible methods. 
 
2.1 The Spanning Tree Algorithm 
 

1. Choose the size (width and height) of the 
maze, and make it fully unconnected, i.e., 
no doors in the maze. Mark all cells as un-
visited. 

2. Choose a cell at random and call it the 
present cell, and mark it as visited (i.e., 
part of the tree). 

3. For each neighbor (up to four of them) of 
the present cell, if it is marked as un-
visited, mark it as frontier. 

4. Choose any frontier cell in the maze at 
random and make it the present cell; con-
nect it to any (random) neighbor marked 
visited. (Step 3 guarantees that every fron-
tier cell will have at least one visited 
neighbor; and it is possible that repeated 
applications of step 3 might have created 
frontier cells with more than one visited 
neighbor.) If there are no frontier cells in 
the maze, go to step 6. 

5. Mark the present cell as visited, and go to 
step 3. 

6. The maze is now connected. 

 
 The spanning tree algorithm will generate a 
singly connected maze, that is, a maze with one 
and only one path from any cell to any other cell. 
(See figure 8.) Sometimes, however, it may be 
required to construct a maze with multiple paths 
between cells. In that case, take the connected 
maze and randomly remove a few walls (except 
for exterior walls). The resulting maze will be 
multiply connected. 
 
2.2 Anderson’s Algorithm 
 
 Peter Anderson (Dept. of Computer Science, 
Rochester Institute of Technology) suggested to 
me the following method of maze construction. It 
is basically the spanning tree algorithm, but its 
function is not to connect unconnected cells, but 
rather to “grow” a set of walls which, when com-
plete, will result in a connected maze. 
 

1. Begin with a maximally connected maze, 
i.e., a maze with no walls (except, of 
course, along the exterior of the maze). 

2. Randomly pick any cell corner to which 
no wall is attached. If there is no such cor-
ner, stop; the maze is finished. 

3. If possible, construct a wall from that cor-
ner to a randomly chosen neighboring 
corner, provided the neighboring corner is 
part of a wall. (I.e., connect a new wall to 
an already existing wall.) 

4. Go to step 2. 
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(a)       (b)      

             

             

             

             

 

(c)       (d)      

             

             

             

             
 

Figure 9. A maze being constructed by Anderson’s 
algorithm. (a) After the first time through step 2. (b) After 
the first time through step 3. (c) After the second time 

through step 3. (d) After the third time through step 3. 

 
Figure 9 shows a five by five cell maze in the pro-
cess of construction according to Anderson’s algo-
rithm. 
 As in the spanning tree algorithm, 
Anderson’s algorithm generates a singly con-
nected maze. Multiple connections may be 
formed, as before, by randomly removing some 
walls. (An option is to add step 1.5: Randomly 
choose any door and make it a wall. It is possible 
— but not likely — that if that initial wall is not 
connected to the maze border, then the resulting 
maze might be multiply connected, namely, by 
having a complete path around the interior of the 
outside border of the maze.) 
 
2.3 Manipulating a Connection Matrix 
 
 A connection matrix is a two dimensional 
array indicating which cells are connected to 
which other cells. Figure 10b, for example, is the 
connection matrix for the maze in figure 10a. An 
entry of “1” indicates a door between the cells 
whose numbers appear at the left column and the 
top row. Each cell is trivially connected to itself. Is 
there some way to manipulate a connection 
matrix so that it will eventually represent a 
connected maze? That is, are there properties of 
connection matrices which are necessary and 
sufficient for the representation of connected 
mazes? There certainly are a few necessary 
conditions which we may notice at once: (1) The 

matrix must be symmetrical about the main 
diagonal. (This is not necessary for mazes with 
one-way doors.) (2) Every row must have at least 
two “1” entries (i.e., each cell must be connected 
to at least one cell other than itself.) Hence, 
because of the symmetry, each column must have 
at least two “1” entries. (3) Some connections are 
impossible (for RFP mazes), as shown by the 
shaded areas in figure 11. 
 Unfortunately, those three conditions are not 
by themselves sufficient to guarantee a connected 
maze, and it seems unlikely to be able easily to 
deduce the missing conditions. That is, a random 
placement of “1” entries in the matrix according 
to the three conditions will not guarantee a con-
nected maze. 

(a) 1 2 3 

 4 5 6 

 7 8 9 

 
(b)  1 2 3 4 5 6 7 8 9 

 1 1 0 0 1 0 0 0 0 0 

 2 0 1 1 0 0 0 0 0 0 

 3 0 1 1 0 0 1 0 0 0 

 4 1 0 0 1 1 0 1 0 0 

 5 0 0 0 1 1 0 0 1 0 

 6 0 0 1 0 0 1 0 0 1 

 7 0 0 0 1 0 0 1 0 0 

 8 0 0 0 0 1 0 0 1 1 

 9 0 0 0 0 0 1 0 1 1 
 

Figure 10. (a) A 33 maze. (b) The connection matrix for 

the maze in (a). 

(a)  f     (b)  f    

 f P f     f V P   

  f       f    

             

             

 

(c)  f f    (d)  f    

 f V P f    f V V f  

  f f      f P f  

          f   

             
 

Figure 8. A maze being constructed by the Spanning Tree 
Algorithm. “P” represents the present cell, “f” indicates the 

frontier cells, and “V” represents visited cells, i.e., cells in 
the solution path. (a) After step 2. (b) After the first time 
through step 4. (c) After the second time through step 3. (d) 

After the third time through step 3. 
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 One reason for that is that each entry in the 
matrix represents where a maze traveler could go 
in one move, and the three conditions above tell us 
only that a traveler could go somewhere in one 
move. What we need, then, is a matrix telling us 
where a traveler could go in n moves, where n is 
the longest of all the longest paths from each cell 
to every other cell, which is to say that n is equal 
to one less than the number of cells in the maze. 
 More information is possible if the matrix is 
multiplied by itself. Let M1 be the name of the 

connection matrix, and let M2 = M1  M1. Then 
each entry in M2 will indicate the number of paths 
of two moves from a given cell to all others. Here’s 
why: Figure 12 shows the multiplication of two 
matrices, A and B, yielding the new matrix C. No-
tice that the subscripts on each element of each 
maze indicate two cells which are being exam-
ined, and the value of the element is the number 
of ways to get from the first cell (aij) to the second 
(bij) in one step (that is, both A and B represent 
M1). Let’s take a look at one of the entries in C, say 

c12. The element a11 is the number of ways to get 
from cell 1 to cell 1 in one step (and so its value is  
1 — i.e., the maze traveler might stay put, as men-
tioned before). The element b12 is the number of 
ways to get from cell 1 to cell 2 in one step (and 
the value is 1, because cell 1 is connected to cell 2). 
We must add to that the product of a12 (the num-
ber of ways to get from cell 1 to cell 2 in one step) 
with b22 (the number of ways to get from cell 2 to 
cell 2 in one step) and the product of a13 (the num-
ber of ways to get from cell 1 to cell 3 in one step) 
with b32 (the number of ways to get from cell 3 to 
cell 2 in one step). The result is therefore the num-
ber of ways to get from cell 1 to cell 2 in two steps. 
An inspection of the M2 matrix for the maze in 
figure 13 will serve to illustrate the result. 
 Now if we multiply M2 by M1, we shall get 
M3, representing the number of ways to get from 
each cell to all others in three steps. Continuing in 
this fashion, we will eventually obtain M8, which 
will represent the number of ways to get from 
each cell of every other cell in 8 steps. For the 
maze in figure 13, there are 9 cells in the maze, 
and so 8 steps ought to be sufficient to get from 
any cell to any other cell, provided the maze is 
connected. Consequently, if every entry in M8 is 
non-zero, the maze is connected, as is the case for 
the maze in figure 13. 

(a) 1 2 3 

 4 5 6 

 7 8 9 

 
(b)  1 2 3 4 5 6 7 8 9 

 1 1         

 2  1        

 3   1       

 4    1      

 5     1     

 6      1    

 7       1   

 8        1  

 9         1 
 

Figure 11. (a) A 33 maze; the interior walls have not yet 
been added. (b) The beginning of a connection matrix for 

the maze in (a). Shaded areas represent impossible 

connections for RFP mazes. 

 a11 a12 a13    b11 b12 b13    

 a21 a22 a23    b21 b22 b23   = 
 a31 a32 a33    b31 b32 b33    

   

 c11 = a11 b11 + a12 b21 + a13 b31  c12 = a11 b12 + a12 b22 + a13 b32  c13 = a11 b13 + a12 b23 + a13 b33  

 c21 = a21 b11 + a22 b21 + a23 b31  c22 = a21 b12 + a22 b22 + a23 b32  c23 = a21 b13 + a22 b23 + a23 b33  

 c31 = a31 b11 + a32 b21 + a33 b31  c32 = a31 b12 + a32 b22 + a33 b32  c33 = a31 b13 + a32 b23 + a33 b33  

 

Figure 12. The general form of matrix multiplication. 
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 If, however, M8 tells us that the maze is not 
connected (see the example in figure 14), then we 
can do something reasonable to make it con-
nected. An unconnected maze is one wherein 
there are two or more regions (of one or more 
cells each) which are inaccessible from each other. 
Choose any two neighboring cells in the maze 
whose entry in M8 is zero. These will be neighbors 
on either side of the border between two such mu-
tually inaccessible regions. Change the maze so 

that the two cells (and hence the two previously 
unconnected regions) are now connected. Com-
pute M8 again. Continue the process until every 
entry in M8 is non-zero. Actually, it might not be 
necessary to compute M8 if all entries in some Mi, 
i < 8, are non-zero. (See M7 in figure 13d.) To gen-
eralize, if n is the number of cells in a maze, then 

the maze is connected if there is some i  n–1 such 
that all of the entries in Mi  are non-zero. Such an 
Mi we will call the complete connection matrix 

(a) 1 2 3 

 4 5 6 

 7 8 9 

 
(b)  1 2 3 4 5 6 7 8 9 

 1 1 1 0 0 0 0 0 0 0 

 2 1 1 1 0 0 0 0 0 0 

 3 0 1 1 0 0 1 0 0 0 

 4 0 0 0 1 1 0 1 0 0 

 5 0 0 0 1 1 1 0 0 0 

 6 0 0 1 0 1 1 0 0 1 

 7 0 0 0 1 0 0 1 1 0 

 8 0 0 0 0 0 0 1 1 0 

 9 0 0 0 0 0 1 0 0 1 

 
(c)  1 2 3 4 5 6 7 8 9 

 1 2 2 1 0 0 0 0 0 0 

 2 2 3 2 0 0 1 0 0 0 

 3 1 2 3 0 1 2 0 0 1 

 4 0 0 0 3 2 1 2 1 0 

 5 0 0 1 2 3 2 1 0 1 

 6 0 1 2 1 2 4 0 0 2 

 7 0 0 0 2 1 0 3 2 0 

 8 0 0 0 1 0 0 2 2 0 

 9 0 0 1 0 1 2 0 0 2 

 
(d)  1 2 3 4 5 6 7 8 9 

 1 127 197 196 28 77 161 7 1 70 

 2 197 323 358 84 189 343 29 7 161 

 3 196 358 470 190 350 547 84 28 273 

 4 28 84 190 393 385 350 330 189 162 

 5 77 189 350 385 477 548 266 134 273 

 6 161 343 547 350 548 750 189 77 386 

 7 7 29 84 330 266 189 316 196 77 

 8 1 7 28 189 134 77 196 127 27 

 9 70 161 273 162 273 386 77 27 204 

 
(e)  1 2 3 4 5 6 7 8 9 

 1 324 520 554 112 266 504 36 8 231 

 2 520 878 1024 302 616 1051 120 36 504 

 3 554 1024 1375 624 1087 1640 320 112 820 

 4 112 302 624 1108 1128 1087 912 519 512 

 5 266 616 1087 1128 1410 1648 785 400 821 

 6 5041 1051 1640 1087 1648 2231 616 266 1136 

 7 36 120 302 912 785 616 842 512 266 

 8 8 36 112 519 400 266 512 323 104 

 9 231 504 820 512 821 1136 266 104 590 

 
Figure 13. (a) A 33 maze.   (b) M1 for the maze.   (c) M2 for the maze.   (d) M7 for the maze.   (e) M8 for the maze. 
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and denote by Mc. Matrices derived from Mc will 
be used later in Section 4.  
 
 

3. Solving Mazes 
 
 Once a maze is known to be connected, there 
are probably countless methods of automating a 
solution. I shall present some simple methods and 
some complex methods. 
 
3.1 Random Walk 
 
 Beginning in the start cell, a random walk 
from cell to cell could eventually lead to the goal 
cell. If directions are chosen pseudo-randomly 
such that the distribution of choices in the long 

run covers all possibilities, then of course the goal 
cell will eventually be reached. Obviously, 
though, this method is better thought of as a non-
method. 
 
3.2 The Left- (or Right-) Hand Walk 
 
 Starting at the start cell, keep your left (or 
right) hand touching a wall. Walk. Eventually 
(with certain kinds of mazes) you will reach the 
goal cell. The maze in figure 13 is amenable to this 
solution, but the maze in figure 15 is not. The rea-
son is that the maze in figure 15 has multiple 
paths between some cells (it is multiply con-
nected). Suppose cell 5 is the start cell and cell 9 is 
the goal cell. A left-hand walk starting in cell 5 
and facing east (or a right-hand walk starting in 
cell 5 facing west) will consist of an infinite loop 

(a) 1 2 3 

 4 5 6 

 7 8 9 

 
(b)  1 2 3 4 5 6 7 8 9 

 1 1 1 0 0 0 0 0 0 0 

 2 1 1 1 0 0 0 0 0 0 

 3 0 1 1 0 0 1 0 0 0 

 4 0 0 0 1 1 0 1 0 0 

 5 0 0 0 1 1 0 0 0 0 

 6 0 0 1 0 0 1 0 0 1 

 7 0 0 0 1 0 0 1 1 0 

 8 0 0 0 0 0 0 1 1 0 

 9 0 0 0 0 0 1 0 0 1 

 
(c)  1 2 3 4 5 6 7 8 9 

 1 2 2 1 0 0 0 0 0 0 

 2 2 3 2 0 0 1 0 0 0 

 3 1 2 3 0 0 2 0 0 1 

 4 0 0 0 3 2 0 2 1 0 

 5 0 0 0 2 0 0 1 0 0 

 6 0 1 2 0 0 3 0 0 2 

 7 0 0 0 2 1 0 3 2 0 

 8 0 0 0 1 0 0 2 2 0 

 9 0 0 1 0 0 2 0 0 2 

 
(d)  1 2 3 4 5 6 7 8 9 

 1 323 512 517 0 0 384 0 0 195 

 2 512 840 896 0 0 712 0 0 384 

 3 517 896 1035 0 0 6 0 0 3 

 4 0 0 0 7 5 0 6 3 0 

 5 0 0 0 5 4 0 3 1 0 

 6 1 3 6 0 0 7 0 0 5 

 7 0 0 0 6 3 0 7 5 0 

 8 0 0 0 3 1 0 5 4 0 

 9 0 1 3 0 0 5 0 0 4 

 
Figure 14. (a) The same maze as in figure 13a, but with a wall between cells 5 and 6, making the maze unconnected.   (b) M1 for 
the maze.   (c) M2 for the maze.   (d) M8 for the maze. 
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traversing cells 5, 6, 3, 2, 1 and 4. Cells 7, 8 and 9 
will never be visited. A left-hand walk beginning 
at cell 5 but facing west, or a right-hand walk be-
ginning in cell 5 facing east, will, however, find a 
solution. 
 An improvement on this method is to keep 
track of cells visited. If you return to a visited cell, 
there is a loop, and to break out of it, switch from 
a left- (right-) hand walk to a right- (left-) hand 
walk. This method will solve the maze in figure 
15. 
 
 

1 2 3 

4 5 6 

7 8 9 
 

Figure 15. A multiply connected maze which cannot 
necessarily be solved by a left-hand or right-hand walk. 

 
 
 But both the simple and improved versions 
of this method will fail to solve mazes where the 
goal cell is a “King’s chamber”, i.e., a cell none of 
chose corners is part of a wall. Such a maze is 
shown in figure 16. 
 
 

S    

    

  G  

    
 

Figure 16. The left-hand or right-hand walk does not guarantee 

a solution to a maze which the goal cell is a “King’s Chamber”. 

 
3.3 Least Recently Used Walk 
 
 A simple (but not speedy) algorithm which 
guarantees the solution of any maze extends the 
idea of marking the cells in order to take note of 
revisits. But in this case it is the doors, and not the 
cells themselves, which are marked, and the goal 
cell is (eventually) discovered by exiting whatever 
cell you are in through the least recently used 
door. 
 

1. Mark all doors with “0”. 

2. Set i  0. 
3. If the present cell is the goal cell, stop. 

4. i  i  + 1. 

5. Choose the door with the lowest number. 
(If more than one door has the same low-
est number, randomly choose between 
them.) 

6. Mark the door as i, and exit through that 
door. 

7. In the neighboring cell, mark the door 
through which you came as i. 

8. Go to step 3. 
 

 In case the maze is so large that an auto-
mated solution requires numbers larger than the 
representative power of the machine being used, 
it may help to realize that it is not necessary to in-
crement i in the manner given in the algorithm 
above. Rather, i need be set only to one more than 
the highest number in the present cell. So for step 
7 we could substitute: 
 

7'. In the neighboring cell, set i to the highest 
number in the cell + 1, and mark the 
door through which you came as i. 

 

Even smaller numbers can be maintained by any 
simple scheme (not to be detailed here) which al-
ways renumbers the doors of a cell just entered 
from 0 (least recently used) incrementally to most 
recently used (i.e., the door you just came 
through). I mention this possibility only because 
such simplifying measures were necessary for a 
version of this algorithm which I implemented on 
a small, programmable calculator (a TI-58, circa 
1977). 
 The main virtue of the Least Recently Used 
algorithm is that its memory requirements are 
minimal. The main vice of the algorithm is that 
since many cells might be visited many times, its 
time requirements can be huge. Another virtue of 
the method is that once a path from the start to 
the goal has been achieved, a path back to the 
start cell is available by going through doors with 
the highest value (not counting the door through 
which you entered the present cell). But another 
vice of the algorithm is that it does not guarantee 
to find the shortest path to the goal cell; indeed, it 
does not necessarily find all paths to the goal cell, 
so that even if you were able to pick the shortest 
of the paths traversed, there might be even shorter 
paths not yet investigated. 
 Pruning algorithms may be added to this 
(and to most any other) solution algorithm. For 
example, a cul-de-sac, once discovered, might be 
specially marked (say, with a negative number) so 
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that it is henceforth no longer used. By this means, 
a tunnel (a string of one or more cells with exactly 
two doors) which leads into a cul-de-sac will itself 
be incrementally closed off. That having been 
done, a solution path can be more efficient. Some-
times a loop can be discovered and marked so 
that it will not be traversed again. But this re-
quires significantly more memory resources (and 
a little bit more time en route) to manage, and so I 
will not discuss such methods here. (See, for ex-
ample, Allen 1979.) 
 
3.4 Breadth-First Search 
 
 The breadth-first search algorithm labels 
cells (not their doors), searching from the start cell 
to all its immediate neighbors. If the goal cell is 
not found, the search is performed outward to the 
neighbors of each of the neighbors of the start cell; 
and so on until the goal cell is found. The algo-
rithm keeps track of which cells are immediate 
neighbors of the start cell, and which cells are 
neighbors of those immediate neighbors, etc., by 
labeling each set of cells (neighbors, then neigh-
bors of neighbors, and so on) with higher and 
higher numbers. 
 

1. Label the start cell as 0. 

2. i  0. 
3. For each cell labeled i, label all unlabeled 

adjacent cells with i + 1. (If there are no 
such adjacent cells, stop; the maze is un-
connected.) 

4. If any of the newly labeled cells is the goal 
cell, stop; a solution path has been found. 

5. i  i + 1. 
6. Go to step 3. 

 
 The results of a breadth-first search are 
shown in figure 17. Notice that a solution path has 
been found. (It is possible that in a multiply con-
nected maze multiple solution paths will be 
marked out.) Unfortunately, such a search is best 
performed in parallel; for a poor traveler trying to 
find his way through the maze, the breadth first 
search method would involve so much backtrack-
ing as to make the algorithm very tedious 
(although perhaps not as bad as the Least Re-
cently Used Algorithm). Moreover, additional 
memory is required to keep track of what “level” 
of the search one is on, and, for each given cell at 
the previous level, whether its immediate neigh-

bors have been labeled at the new level. In addi-
tion, the cells, once having been labeled, do not 
provide a very efficient means of traveling that 
same path again without going through another 
breadth-first search. The labeling does, however, 
provide an excellent means of returning to the 
start cell from the goal cell: simply move to the 
neighbor cell with the lowest number. As a bonus, 
the number in a cell also tells you how many cells 
remain between your present position and the 
start cell. (Since breadth-first search might mark 
out multiple solution paths, there could also be 
multiple return paths.) 
 The breadth-first search method, if started at 
the goal cell in search of the start cell, will provide 
a clear (and shortest) path from the start to the 
goal. (Just move to that neighbor with the lower 
number.) And the label in a cell will indicate the 
distance to the goal. Of course, retracing one’s 
path will involve as much backtracking as finding 
the goal cell did in the original version. 
 

(a)     

 S    

    G 

     

 

(b) 1 6 5 6 

 0  4  

 1 2 3 6 

 2 5 4 5 
 

(c)  6 5 6 

 6  4 1 

 5 4 3 0 

 6 3 2 1 
 

Figure 17. (a) A 44 maze with start and goal cells. (b) The 
final labelling generated by breadth-first search. (c) A 

breadth-first search started from the goal cell back to the 
start cell. 
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3.5 Tremaux’s Algorithm 
 
 Tremaux’s algorithm (see Even, 1979, pp. 
53f) is a depth-first search used to visit all cells, 
terminating in the original cell after having 
examined all doors once in each direction. (The 
Hopcroft-Tarjan version of depth first search is 
described in Even 1979, p. 56. Variations on 
Tremaux’s algorithm are given in Even 1979, pp. 
66f.) 
 

1. Make all doors unmarked. 
2. Choose some cell to be p, the present cell. 
3. If there are no unmarked doors, go to step 

7. 
4. Choose any unmarked door, mark it “E”, 

and go through to the neighboring cell. 
5. If this neighbor has any marked doors (i.e., 

if the cell has been visited before) mark 
the door back to p with “E”, go back to p, 
and go to step 3. 

6. This neighbor has not been visited before. 
Mark the door back to p with “R”, assign 
this cell to p, and go to step 3. 

7. If there is no door marked “R”, stop; we 
are back in the start cell, and the whole 
maze has been visited. 

8. Go through the door marked “R”, assign 
this new cell to p, and go to step 3. 

 
 Figure 18 shows the progress of this algo-
rithm. If it is necessary only to find some path to 
the goal cell (rather than to visit every cell), then 
the following step could be substituted for step 6: 
 

6'. Mark the door back to p with “R” and as-
sign this cell to p. If p is the goal cell, stop. 
Otherwise, go to step 3. 

 
 Tremaux’s algorithm will find the goal cell 
(provided, of course, that the maze is connected), 
and in addition it will provide a clear return path 
to the start cell. It also has the advantage of mark-
ing each door only once, unlike the Least Recently 
Used algorithm. However, it does not provide any 
means of repeating the solution path, except by 
once again solving the maze. But this can easily be 
remedied. During the retracing, use a counter, 
initialized to zero, and incremented by one each 
time you follow the “R” marks to a neighboring 
cell; replace the “E” on the door through which 
you just came with the value of the counter. Now 

a permanent path is given from the start to the 
goal simply by following the numbered doors. 
What’s more, the numbers on the doors will indi-
cate the number of steps necessary to get to the 
goal cell. Unfortunately, if there are any “cycles” 
in the maze — if, that is, it is multiply connected 
— the solution path is not guaranteed to be the 
shortest. 
 Another variation on the original algorithm 
is to include a test for the goal cell, at which time, 
instead of halting or simply retracing our steps 
(even with a counter), we continue the search, this 
time with the help of a counter. New cells found 
are incrementally marked, and during backtrack-
ing we decrement the counter. We will have to 
revisit some cells in order to mark them with 
counters. But when the process is complete — 
when we are back in the start cell after having 
visited all cells (some twice) — then each cell will 
have exactly one door marked with a number in-
dicating the number of steps (through that door) 
from the start to the goal. (I suspect that this path 
will also be the shortest path, but a proof of that 
is, as they say, left up to the reader.) 

 
 
  

S

G

E

R

R

R R

R

R

R

R

R

R

R

R

R

E

E

E

E

E

EE

E

E

E

E

E

 
 

Figure 18. Tremaux’s algorithm at work. 
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3.6 The Cheese Algorithm 
 
 All the previous methods of solving a maze 
relied on a maze traveler’s own discoveries 
during movement though the maze. I suggested 
earlier in the discussion of the breadth-first search 
algorithm that if the search were reversed so that 
investigation proceeded outward from the goal 
cell, rather than outward from the start cell, then 
the maze traveler would have a clearly marked 
path to the goal cell. But how, in terms of a 
traveler in a maze, are we to conceive of such a 
backwards search from the goal? If we already 

knew where the goal cell was, we wouldn’t have 
to search at all. 
 Suppose, however, we present the maze 
problem as a simulation of two events taking 
place simultaneously: the first is the traveler, try-
ing to find a solution path as usual. The second is 
some kind of information from the goal cell being 
broadcast outwards. Imagine, then, that in the 
goal cell is a piece of cheese — perhaps Limburger 
cheese — the odor of which gradually permeates 
the entire maze. Naturally, the strength of the 
odor in any given cell will be proportional to the 

(c)  G         (d)  G        

                     

                     

                     

                     

                     

                     

                     

                     

(a)  G         (b)  G        

                     

                     

                     

                     

                     

                     

                     

                     

Figure 19. TAR spreading throughout a maze. The cheese is in the goal cell (G). Although the TAR for each cell changed over 
time, the direction of greatest TAR for each cell changed only rarely. (Arrows indicate, for each cell, the direction of greatest 

aroma.) 
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distance of that cell from the cheese itself. The 
maze traveler (which we might as well concede is 
a rat) need only stay put in the start cell (or, if the 
rat is smart enough, it might initiate one of the 
earlier search algorithms) until it smells the 
cheese, at which time it follows the rule: proceed 
in the direction of strongest cheese odor. And as 
cells are gone through, they may be marked so 
that retracing the path back to the  start cell is 
possible, and so that the path from the start to the 
goal may be followed at any future time without 
again having to search. 
 The strength of the cheese smell can be simu-
lated by attaching a number (say between 0 and 1) 
to each cell. Let us call such a number the Total 
Aroma Rating, or TAR. (“TAR” is “RAT” going 
backwards.) The cheese cell will have a constant 
TAR of 1, and all other cells will begin with a TAR 
of 0. After each unit of simulated time, the 
strength of the odor in a given cell will be the re-
sult of the aroma the cell already has, minus what 
it loses to all its immediate neighbors, plus what-
ever it gains from its neighbors. For the sake of 
simplicity, we may say that the TAR of a cell will 
be equal to the average of its own TAR plus its 
neighbors’ TARs. 
 Although spreading TAR is similar to a 
breadth-first search from the goal to the start, 
there are some differences. TARs change, whereas 
in the breadth-first search, a cell once labeled re-
tains that label. And if there are cycles in the 
maze, odor will spread along two paths and then 
tend to disturb each other as they join up later. 
The question is, will the rat be able to find the 
cheese simply by following increasing TARs? 
 The answer is, almost obviously, Yes. But 
instead of constructing a formal proof, a simula-
tion was employed. Figure 19 shows the 9 by 9 
cell test maze after a number of iterations as the 
TAR activation spreads. A number of such runs 
were made, with the expected results.  
 
 

4. More on Connection Matrices 
 
 A disadvantage of all the maze solving algo-
rithms is that none will mark out a path from any 
cell to any other cell. That is, given the same set of 
doors and walls, but a different start or goal cell, 
the entire algorithm will have to be run anew. 

 In section 2.2, Mc was called the complete 
connection matrix, a maze’s connection to the ith 

power, where 1  i  n–1 (where n is the number 
of cells in the maze; hence, n–1 is the longest pos-
sible path in the maze) such that all entries in Mi 
are non-zero. Not only does Mc tell us whether the 
maze is connected, but it also gives us a basis for 
understanding how it is connected. Specifically, 
what we are looking for is a matrix which gives us 
the minimum distance from any cell to any other 
cell. Let Md be such a minimum distance matrix. It 
will display in matrix form the structure of walls 
and doors of the maze. Such information will, in 
turn, provide us with a means for calculating the 
path from any start cell to any goal cell. That is, 
from Md we will be able to construct Msg, the so-
lution matrix for the goal cell g. 
 
4.1 Constructing Md, the Minimum Distance Matrix 
 

 Repeatedly running one of the maze solving 
algorithms (with suitable enhancements) may 
provide us with Md. But given M1, Md will be sim-
ple to calculate as we are constructing Mc. Once 
an entry in some Mi becomes non-zero, we know 
how many steps (namely, i) there are between the 
cell in the given column and the cell in the given 
row for that entry. Thus, i becomes the value for 
that entry in Md. That is, for each of Mi, i = 2…c, 
all non-zero entries in Mi which were 0 in Mi–1 are 
assigned the value of i in Md (excluding Md

jj en-
tries — that is, the entries in the main diagonal — 
which are assigned 0 in Md, since there are mini-
mally 0 steps between any cell and itself). Figure 
20 repeats the maze shown earlier in figure 15, 
and gives both Mc and Md. 
 
4.2 Constructing Ms, the Solution Matrix 
 
 Suppose, for the maze in figure 20a, that cell 
1 is the goal cell. We wish to know how best to get 
to that cell from wherever we are. Suppose we are 
in cell 5. Consulting Md we discover that cell 1 is 
two cells away. But in what direction? It is easy to 
find out. From cell 5 we can move only to cell 4 or 
to cell 6. (These are the entries in Md in figure 20c 
indicating minimal distances of 1 from cell 5.) If 
we were to move to cell 4, then cell 1, according to 
Md, would be one step away; if we were to move 
to cell 6, then cell 1 would be 3 steps away. 
Clearly, then, we get closer to cell 1 from cell 5 by 
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moving to cell 4. So the process for calculating Msg 

for any g in a maze with n cells is as follows: 
 

1. Msg
ij  –1 for all i, j (–1 simply indicates 

an invalid entry). 

2. For i = 1…n, i  g 
For each k, k = 1…n such that Md

ik = 
1 and Md

kg < Md
ig 

 Ms
ik  Md

ig. 

3. Ms
gg  0. 

 

Figure 21 shows solution matrices for g = 1, 2 and 
3. 
 Notice that each solution matrix is equivalent 
to the results of a breadth-first search initiated 
from the given goal cell outwards to the rest of the 
maze. Since the structure of a maze is known once 
M1 is known, it is then a question of implementa-
tion-dependent efficiency whether to engage in 
matrix multiplication or whether to simulate 
breadth-first searches in order to create any (or 
all) desired solution matrices. 
 Although the solution matrix is perhaps not 
very useful for the ordinary solve-a-maze puzzle, 
it might be useful in certain variations. Suppose, 
for example, that the rat is looking for the cheese 
placed somewhere in a familiar maze. And sup-
pose the cheese has legs with which to move 
away from the rat. OK, if that’s supposing too 
much, then we may instead imagine a com-
puterized demon trying to catch a human player 
in a maze game. As long as the demon knows the 
identity to the cell its prey is presently in, it can 
consult the proper Ms and make the most efficient 
move towards it. In effect, the demon faces the 
problem of a continuous automated solution, 
where the start cell and goal cell are changing in 
the same maze. Either the specific Ms is calculated 
as needed, or else all of them are calculated, 
stored and consulted later on as required. 
 
4.3 Cautions 
 
 But let’s be clear about what has been 
claimed for these matrices. If you were put at the 
entrance (i.e., in a start cell) of an unfamiliar maze 
and told to go find the treasure and return, then 
there would be nothing for it but to use a suitable 
maze solving algorithm; after all, you do not yet 
know the structure of the maze; and not only do 
you not know how to get to the goal cell, you do 
not know its identity. However, once given the 
structure of the maze — after having examined it 
on your first run — you can construct the 
connection matrix, and hence Mc, Md and Ms. At 
that point you can efficiently retrieve any further 
treasure in the maze merely by being told the 
identity of the cell it is in. Suppose, however, that 
although you have Md, you know only that there 
is a treasure somewhere in the maze. Even though 
in your search for the treasure you can now be 
more efficient than a traveler who knows nothing 
about the structure of the maze, you will never-

(a) 1 2 3 

 4 5 6 

 7 8 9 

 
(b)  1 2 3 4 5 6 7 8 9 
 

1 56 47 35 63 40 33 35 15 10 

 
2 47 51 47 40 32 40 17 5 16 

 
3 35 47 56 33 40 62 10 2 30 

 
4 63 40 33 91 64 45 61 30 17 

 
5 40 32 40 64 61 63 35 15 30 

 
6 33 40 62 45 63 86 18 5 46 

 
7 35 17 10 61 35 18 51 31 5 

 
8 15 5 2 30 15 5 31 21 1 

 
9 10 16 30 17 30 46 5 1 26 

 
(c)  1 2 3 4 5 6 7 8 9 
 

1 0 1 2 1 2 3 2 3 4 

 
2 1 0 1 2 3 2 3 4 3 

 
3 2 1 0 3 2 1 4 5 2 

 
4 1 2 3 0 1 2 1 2 3 

 
5 2 3 2 1 0 1 2 3 2 

 
6 3 2 1 2 1 0 3 4 1 

 
7 2 3 4 1 2 3 0 1 4 

 
8 3 4 4 2 3 4 1 0 5 

 
9 4 3 2 3 2 1 4 5 0 

 
Figure 20. (a) A 33 maze. (b) Mc = M5 for the maze. (c) Md for 

the maze. 
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theless have to employ some search procedure or 
other. That is, you know how to get efficiently 
from any cell to any other cell; but since you do 
not know the identity of the goal cell, you will 
have to search for it. That is, you face a traveling 
salesman’s problem: how shall you organize your 
travels along alternative but known routes in or-
der to cover all the territory while incurring the 
least cost? (Cost, in this case, is distance. The least 
cost will be incurred for the least backtracking.) It 
is a restricted traveling salesman’s problem in that 
the start cell is stipulated. I have a gut feeling that 
some sort of matrix manipulation might straight-
forwardly solve this problem (would that make 
me famous?), but I have no suggestions to offer at 
this time. (Gut feelings are not very reliable any-
way.) 
 
 

5. A Neural Net Maze Solver 
 
 The solution methods I have discussed in-
volve putting various identifying marks in the 
cells of the maze (or, what comes to the same 
thing, “marking” a memory image of the maze). 
The memory — the record — which helps guide 
you through the maze is imprinted upon the maze 
(or a copy of the maze) itself. In order to deter-
mine what to do next, at any given position, you 
need only consult the marks in the present cell 
and apply an appropriate rule. If there is an inde-
pendent memory in use, it is minimal: perhaps a 
counter, for example. 
 Imagine, however, that you are trying to 
move through a maze without the benefit of being 
able to leave identifying clues (or clews). Your 
own memory serves only as a more or less 
(un)reliable “feel” — a sense of context, perhaps, 
which grows with experience of the maze. That is, 
as you move through the maze you more and 
more confidently identify patterns of kinds of 
cells. You may learn, for example, that there is one 
section of the maze with a very long corridor, 
each cell of which has a door to the right leading 
to a cul-de-sac. If you have knowledge of such a 
corridor, then you might recognize it whenever 
you move through it, and this identification might 
serve adequately as a means of orientation. Such a 
memory is a behavior pattern. 
 

 

(a)  1 2 3 4 5 6 7 8 9 
 

1 0 1 2 1 2 3 2 3 4 

 
2 1 0 1 2 3 2 3 4 3 

 
3 2 1 0 3 2 1 4 5 2 

 
4 1 2 3 0 1 2 1 2 3 

 
5 2 3 2 1 0 1 2 3 2 

 
6 3 2 1 2 1 0 3 4 1 

 
7 2 3 4 1 2 3 0 1 4 

 
8 3 4 4 2 3 4 1 0 5 

 
9 4 3 2 3 2 1 4 5 0 

 
(b)  1 2 3 4 5 6 7 8 9 
 

1 0 1 2 1 2 3 2 3 4 

 
2 1 0 1 2 3 2 3 4 3 

 
3 2 1 0 3 2 1 4 5 2 

 
4 1 2 3 0 1 2 1 2 3 

 
5 2 3 2 1 0 1 2 3 2 

 
6 3 2 1 2 1 0 3 4 1 

 
7 2 3 4 1 2 3 0 1 4 

 
8 3 4 4 2 3 4 1 0 5 

 
9 4 3 2 3 2 1 4 5 0 

 
(c)  1 2 3 4 5 6 7 8 9 
 

1 0 1 2 1 2 3 2 3 4 

 
2 1 0 1 2 3 2 3 4 3 

 
3 2 1 0 3 2 1 4 5 2 

 
4 1 2 3 0 1 2 1 2 3 

 
5 2 3 2 1 0 1 2 3 2 

 
6 3 2 1 2 1 0 3 4 1 

 
7 2 3 4 1 2 3 0 1 4 

 
8 3 4 4 2 3 4 1 0 5 

 
9 4 3 2 3 2 1 4 5 0 

 

Figure 21. (a) Ms1 for the maze in fig. 20. (b) Ms2 (c) Ms3. 
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 The problem now in solving a previously 
learned maze under the constraint of not being 
able to leave marks in the cells is to first orient 
oneself. Once oriented, it is a matter of following 
one’s internalized “feel” in order to remain ori-
ented. 
 This is usually inherently serial. One might 
not clearly anticipate the proper moves in ad-
vance; that is, you might not be able to recall, in 
advance, that at a certain point you will have to 
turn right. Rather, you will simply wait until the 
pattern seems to emerge on its own in response to 
the present context. 
 An artificial neural net embodies at least 
some of the properties we need in order to create 
such a memory. Neural nets do not store explicit 
memory images; rather, they contain a network of 
interactions which, given the proper stimulation, 
will recreate certain kinds of responses. We may 
say that the neural net’s memory is its ability to 
engage in such recreations. 

 But most research on artificial neural net-
works has not focused on the time domain, 
whereas I am searching for a neural net architec-
ture which will tend to serialize its recreations. I 
propose a sketch of a possible neural network to 
solve mazes. It is based roughly on an idea for 
serial learning proposed by Jordon (1986) and 
later used by Todd (1989). But whereas Jordon’s 
network learned by means of back-propagation 
(wherein mistakes made by the net are corrected 
by an all-knowing teacher), my proposal is for a 
network which teaches itself. 
 Figure 22 shows the components of the net-
work. The general idea is that the network will 
receive information about the type of cell it is in 
(i.e., which sides of the cell have doors and which 
have walls), make a decision as to the direction of 
motion out of the cell (to simplify matters, I use 
compass directions instead of an “egocentric” ori-
entation), and then predict the kind of cell it will 
be moving into. This prediction is then compared 

N E S W

Move

Decide

G

Goal

mutual weak

inhibition

strong inhibition

adjust

weight = 1

weight = 1

weight = 1

reward

Compare

T1 T2 T15. . .

Actual

T1 T2 T15. . .

Predict

T1 T2 T15. . . T1 T2 T15. . .

RAT1

MAZE

T , T , ..., T   are 15 maze cell types:1 2 15 ...

Figure 22.  A proposal for a maze-learning net.

 
Broken lines are weight adjustment lines. 

1. If predicted cell type = actual cell type, certain weights are adjusted away from zero. 

2. If predicted cell type  actual cell type, certain weights are adjusted toward zero. 
3. If goal cell is reached, certain weights are rewarded (moved further from zero). 
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to the actual cell type moved into, and on the 
basis of that comparison, various of the net’s 
weights will be affected. Also, if the goal cell is 
ever moved into, some of the net’s weights are af-
fected. The four move nodes constitute a “winner-
take-all” subnet, activated by the “decision” sub-
net and strongly inhibited by various of the 
“actual cell type” nodes in order to ensure that a 
move chosen is a possible move. The move nodes 
are mutually inhibitory so that as one node’s acti-
vation tends to grow, the others tend to diminish, 
with the result that eventually one and only one 
node will be active as the chosen direction. 
 The activity of the decision subnet is fed into 
the predictor subnet. Active nodes in this subnet 
are taken to represent the one (or more) cell types 
which the node expects to see after making the 
move indicated by the active node. They also act 
as a kind of “context” which is verified or falsified 
by the action of weight adjustments which take 
place after comparing the predictor’s predictions 
with the actual new cell type. If this idea of 
“context” works, then the net will choose moves 
in a serial order based in some degree upon past 
modes and some degree on the present situation. 
That is, the net will “learn” a route from a given 
start cell to a given goal cell. 
 Once having learned a route, the start cell 
and/or the goal cell may be changed and the net 
allowed to investigate anew. The hope is that 
eventually the net will have a “feel” for the entire 
maze, and that it will be able roughly to orient 
itself anywhere in the maze after a number of 
moves. 
 An interesting feature about this proposed 
net is that it is given no knowledge about the size 
of the maze; the net, if it works at all, will work on 
different sized mazes. (There is obviously some 
limit to the maze complexity of course.) 
 I have been talking about the net as a pro-
posal rather than as an accomplished machine, be-
cause at this stage it is only partially imple-
mented. The basic structure of most of the nodes 
has been worked out, but it will be some time be-
fore all the pieces can be put together for some 
serious trials. 
 
 

6. Maze Games 

 
 So far I have been talking of mazes as mazes 
— a series of paths from points to points. The se-
ries of paths may be simple or complex, but in any 
case the object is to move from some given point 
to some other. Although we may delight in the 
cleverness of a maze (perhaps it is embedded in a 
complex drawing, for example), as a puzzle or 
game it is rather restricted and can quickly 
become boring. If we wish to make use of the 
power of a computer in constructing and ref-
ereeing maze games, we ought to look to 
something other than the mere display of a maze 
which we are to traverse from entry to exit. 
 
6.1 Blind Mazes 
 
 The first enhancement to computer maze 
games is straightforward: do not represent to the 
player his position relative to the rest of the maze 
— or else make this information at least partly 
hidden. 
 Such a maze game might, for example, dis-
play the perimeter of the maze and the position of 
the player inside the maze relative to the perime-
ter, but not display the individual cells within the 
maze, nor, of course, the paths from cell to cell. 
Such a maze we can call a blind maze. The player 
specifies the direction of desired movement from 
the present cell: up, right, down, or left (or else 
north, east, south or west). The player is moved 
accordingly if the present cell is open in the cho-
sen direction. Otherwise, the player bumps up 
against a wall and remains in the present cell. (As 
an option, a wall which is bumped up against 
might then be displayed.) Allowing the player a 
maximum number of attempts to move in order to 
reach the exit cell would add an additional 
challenge. By adding a computer-simulated 
opponent (or by allowing for a second human 
player as an opponent), the game can be made 
even more challenging: one player tries to reach 
the exit cell (or goal cell) within a certain time, or 
within a certain number of moves; the opponent 
tries to catch the player (or get to the goal cell 
first). Both players move around the maze under 
constraints of darkness. 
 Instead of providing a “bird’s eye view” of 
the maze, the player might be shown only the 
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“player’s eye view”. You will see only what is di-
rectly in front of you: either a wall, or else an 
opening to another cell. Only by turning around 
in your cell will you be able to learn where the 
cell’s exits are located. In such a case, you might 
issue commands such as rotate right, rotate left, or 
move forward. Whether you are moving north, east, 
south or west will be known by the computer, 
which will keep track of your position and orien-
tation, but can be known by you only if you keep 
track for yourself. The “player’s eye view” might 
be enhanced by showing a perspective view of 
your position. Thus, if you are facing an exit from 
the cell, you will be able to see through into the 
next cell; if that cell has an opening on the facing 
wall, then you will be able to see through to the 
cell beyond that; and so on. 
 Adding an opponent (human or computer) 
who also roams the maze, will add challenge to 
such a game. In fact, such a multiplayer maze 
game would be a good candidate for a multi-
computer game. 
 
6.2 Wrap-Around Mazes 
 
 Certain very simple modifications to the 
traditional maze can be implemented. Consider, 
for example, the very simple maze in figure 23. 
One cell (cell 4) is established as the exit cell: 
moving north from that cell will constitute exiting 
the maze (and, presumably, winning the game). 
But in cell 9, movement is allowed only 
southwards. And in cell 10 there are walls to the 
east and west. Of course, there must be a wall on 
the east side of cell 10, because if there were not, 
then cell 10 would be the exit cell (or another exit 
cell). But wait! Why must moving east from cell 10 
(assuming there were an opening there) really 
constitute an exit from the maze? Perhaps, 
instead, we can allow the maze to “wrap around” 
to the other side, such that moving east from cell 
10 would put you into cell 6 (or 11). Allowing for 
such a possibility immediately transforms the 

very simple 55 maze into an effective 5 maze. 
Allowing for wrap-around in the vertical 
direction as well will transform the maze into a 

 maze. If the player is given information only 
about the present cell (and, perhaps, about any 
cell which can be seen through an exit from the 
present cell), then even a simple maze will be very 
difficult to traverse, unless, by keeping careful 

records, the player begins to spot a repetition of 
patterns in the cells moved through. 
 Such an infinite wrap-around maze is ex-
tremely easy to implement on even a very small 
computer (I have put such maze games on 
programmable calculators), especially where the 
cells are internally represented as an ordered set 
of four walls, where, say, a “1” represents a wall 
and a “0” represents an opening. The computer 
need only keep track of which cell the player is in 
and the orientation of the player within the cell. 
Thus, 
 
 cell(i,1) = status of north side of cell i. 
 cell(i,2) = status of east side of cell i. 
 cell(i,3) = status of south side of cell i. 
 cell(i,4) = status of west side of cell i. 
 
To move east from cell i, then, is allowed only if 
cell(i,2)=0, and a successful move then places the 
player in cell i+1. 
 
6.3 One-Way Doors 
 
 Still another enhancement to a traditional 
maze is easy to implement, and this too can make 
even a small maze seem very complex, especially 
when a “player’s eye view” is provided (instead 
of a “bird’s eye view”). 
 If each cell is represented by the status of its 
four walls (say, “1” for a wall, and “0” for an 
opening), then one expects that the neighboring 
cell will also have a corresponding “1” or “0”. But 
suppose it doesn’t. Suppose, for example, you are 
in a cell whose status indicates that the north side 
is an open door (“0”). Given the “player’s eye 
view”, and given that you are facing north, that 
means that you can look straight ahead into the 
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Figure 23. A simple 55 maze. Moving north from cell 4 

will exit the maze, unless it is a wrap-around maze, in 
which case moving north from cell 4 would land you in cell 

24. 
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next cell. Suppose you move ahead into that cell. 
But suppose that the new cell’s status, instead of 
indicating a “0“ for its south side (which, after all, 
would make sense, since you just came in that 
way), is actually “1”. This means that if you were 
to turn around and face south, expecting to see 
through to the cell you had just come from, you 
would instead see a wall (or a closed door, or 
whatever it is that the game represents as a 
barrier). You have just come though a one-way 
door, and this makes traditional maze search 
algorithms far less useful, since, after moving 
through a one-way door into a cell never visited 
before, there will be no information about how to 
get back to the cell you came from without 
initiating a brand new search. 
 Even a very small maze which wraps around 
both horizontally and vertically, and which has a 
few one-way doors, can be an extremely difficult 
maze to solve. 
 
6.4 Interpreted Mazes 
 
 A puzzle or game can be modeled on a maze 
without the game or puzzle seeming to be a maze. 
That is to say, the game will have a maze as its 
underlying structure, but the maze will not be 
apparent to a player of the game; the player will 
not think in terms of a maze at all. 
 Such a game can be constructed by inter-
preting (or translating) the constituents of a maze 
game into some other idiom. That is, being in a 
cell will be represented as being in some game 
situation with a number of options available (one 
for each open door). To accept a particular option 
is to move through the door into another cell — 
into another game situation with a (possibly new) 
set of options. (Or else each cell is a game, and 
entry to that cell from a neighbor is allowed only 
by successfully completing the game.) 
 For example, instead of geometrical motion 
through a maze, a game might be represented as a 
series of choices for trading goods. The player is 
given some object to begin with and then, for each 
open door in the cell, he is offered an object in 
trade. Accepting a trade which leads farther from 
the goal will result in some sort of net loss (say, in 
the dollar value of the item presently held), 
whereas accepting a trade which brings the player 
closer to the goal will result in a net gain. 
Backtracking might mean having to trade back for 
items previously held (presumably for a net loss). 

 Another example: A maze engine might 
underlie a bureaucracy game, where the goal is to 
contact Mr. X. At any given time (i.e., within any 
given cell) the player is allowed to contact only 
certain persons in the bureaucracy (various 
secretaries, undersecretaries, assistants, deputy 
managers, and so on). Some contacts lead 
immediately to dead-ends, i.e., closed doors in the 
cell. (Perhaps there are ten unhelpful persons in 
the bureau, and perhaps each of the closed doors 
in each cell is presented to the player as one of 
those ten chosen at random, so that very often the 
player is given a choice to contact, say, Assistant 
Deputy Under Secretary Smith, who turns out 
always to be most unhelpful. Eventually, the 
player will simply avoid bothering with Smith — 
which is to say that, in terms of the underlying 
maze engine, the player will have learned to 
recognize one kind of closed door.) 
 A maze engine might underlie instructional 
games. In order to gain entrance to a cell, a player 
has to successfully solve a certain kind of math 
problem. Easier problems lead farther from the 
goal, and harder problems lead closer to the goal. 
 Or each cell might represent a word spelling 
problem (or a word definition problem, or a 
language translation problem), where, as in the 
math game above, successfully completing easy 
problems takes the player farther from the goal, 
and successfully completing harder problems 
brings the player closer to the goal. 
 In general, each cell of the underlying maze 
engine might represent some activity or other 
(perhaps an entire game in itself, such as a Battle-
the-Aliens game or a chess game, or…), and the 
game must be successfully completed in order to 
advance (i.e., move into the next cell), at which 
time another series of options is presented. And 
so on until the goal cell is reached. Probably 
multiply-connected mazes (i.e., mazes with more 
than one path from the start cell to the goal cell) 
would be appropriate for such maze engines. 
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