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1. Background

A. H. Klopf (1982) proposed to treat neurons (or a class of neurons) as “hedonists”. 
If depolarization (i.e., excitation) is considered “pleasure”, and hyperpolarization 
(i.e., inhibition) “pain”, then we may imagine a neuron which seeks to maximize 
depolarization and minimize hyperpolarization (or, rather, maximize their 
difference). Klopf calls the strategy which such a neuron might use heterostatic 
adaptation. It is quite straightforward: whenever the neuron fi res (because its 
excitations less its inhibitions exceed some threshold), it will “notice”, during some 
subsequent interval,  (probably a few seconds), whether the difference between its 
excitations and inhibitions changes. Positive changes result in the neuron’s greater 
tendency to fi re on subsequent occasions, and negative changes have the opposite 
effect. Such tendencies will be implemented by means of changes to the neuron’s 
postsynaptic effi cacy — increasing the effi cacy of excitatory connections in the 
case of positive changes, and increasing the effi cacy of inhibitory connections in 
the case of negative changes.

For a neuron, temporal and spatial confi gurations of active synapses represent 
conditioned stimuli (CS), fi ring represents a conditioned response (CR), and the 
excitation or inhibition that arrives during a limited period of time after fi ring 
constitutes the unconditioned stimulus (US) [Klopf, 1982, p. 5]

which then acts as CS for signals which arrive still later.
 On Klopf’s drive-reinforcement model, earlier changes in synapse activation 
are to be correlated with later changes in neuronal activity. This is accomplished 
by discretizing a certain interval of time and assigning “eligibility” values to 
each discrete time — in effect, an array of values for the past τ time units. A 
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second requirement is in effect a second array, namely, the record of changes 
of presynaptic activations, so that when neuronal activation changes, the past 
presynaptic activations can be correlated with the past eligibility values so as to 
create changes in synaptic weight.
 But these requirements impose a computational burden (especially in large 
networks), and so a simplifying alternative to one or both of them would be 
desirable. In addition, lists of eligibility values and presynaptic changes are 
necessarily fi nite, so that unless the lists are changed, we cannot take a more 
fi ne-grained look at weight changes, nor investigate conditioning effects for 
interstimulus intervals greater than the last discrete time unit, nor investigate 
conditioning effects for different eligibility values.
 Klopf (1986) makes several not unreasonable simplifying stipulations: that 
the optimum interstimulus interval (ISI) is 500 msecs; that ISIs shorter than the 
optimum are not interesting; and that ISIs greater than about 2500 msecs are not 
interesting. But these stipulations are very restricting. In particular, in animal 
learning experiments the optimum ISI varies depending on the experimental 
preparation and the species of the animal to be conditioned (Rachlin, 1976; 
Bitterman, 1965; Ost & Lauer, 1965; Razran, 1965; Gormezano, 1972; Alkon, 1983; 
Alkon et al., 1989), and conditioning effects occur well beyond 2.5 seconds (Ost 
& Lauer, 1965; Kehoe, 1990). In one experiment the ISI was 60 seconds (Garcia, 
McGowan & Green, 1972).
 Since Klopf’s eligibility values fall roughly on an exponential curve, my 
simplifi ed drive reinforcement (SDR) model uses a single value which acts as 
an exponentially decaying impression of past presynaptic changes, thereby 
both simplifying and generalizing Klopf’s model. The exponential decay may 
be followed out to an arbitrarily large ISI; there is no requirement to keep 
lists of eligibility values and past presynaptic changes; and consequently the 
computational burden is considerably lessened.

2. The SDR model

 ∆wi(t) = βei(t) ∆y(t) (1)
 ei(t) = αei(t–1) + |wi(t–1)| min[0, ∆xi(t–1)] (2)
 ei(0) = 0 (3)

where ∆wi(t) = wi(t+1) – wi(t); ∆y(t) = y(t) – y(t–1); y(t) is the node output, defi ned 
as the sum of all inputs, xi, times their respective weights, wi, and is bounded to 0 
≤ y(t) ≤ YMAX (probably any convenient function will do; I have used both hard-
limiting and an exponential function); ∆xi(t) = xi(t) – xi(t–1); and all weights, wi, 
have initial non-zero values and minimum absolute values, 0 < WMIN ≤ |wi|. β is 
a positive constant which infl uences the rate of weight changes. The ei, always non-
negative, are the “eligibility” values and act as exponentially decayed impressions 
of past presynaptic changes with decay rate α, 0 < α <1.
 The equations above can be described in terms of a simple algorithm for 
updating the synapses of a given node:

y = bound(∑
i

wixi)
∆y = y – previous_y
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Figure 2
A time trace of the SDR model during several conditioning trials. Except for the eligibility values, the model acts 
approximately like Klopf’s.
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Figure 1
An SDR node has one or more CSs (conditioned stimuli), each with a modifi able effi cacy (weight), one US (un-
conditioned stimulus), whose synapse is unmodifi able, and an output.

for each synapse, i {
ei = ei α
if ∆xi > 0 then ei = ei + ∆xi |wi|
wi = wi + βei∆y
if |wi| < WMIN then |wi| = WMIN
∆xi = xi – previous_xi

previous_xi = xi

}

 (Although the SDR model was developed principally from Klopf’s model, it 
may also be derived from the Sutton-Barto model (Sutton and Barto, 1981, 1990) in 
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The SDR model under six conditioning experiments. Parameter values are given in the text.
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a straightforward way.)
 Figure 2 shows a time trace of the main variables of the SDR model during 
some typical conditioning trials. Notice that the eligibility, e, is triggered by the 
rising edge of the conditioned stimulus (CS) (i.e., the node input x). Neither the 
falling edge of CS nor a steady level of CS (whether low or high) has any effect on 
e, although the node output y, and therefore also the change in output, are affected.  
The SDR model, following Klopf, requires that weights have minimum absolute 
values. Why should we begin with non-zero weights? For two reasons. First, the 
equations of the model will not produce weight changes when weights are zero. 
For this reason also, weight changes are not allowed to cross zero: excitatory 
connections remain excitatory, and inhibitory connections remain inhibitory. 
Second, a CR cannot be reinforced unless the CR has some possibility of occurring 
(prior to US onset).

3. Classical conditioning experiments with the SDR model

3.1 Trace conditioning, delay conditioning effects, and extinction

Figure 3 shows the progress of synaptic weight changes in an SDR unit over 
150 trials using trace conditioning, delay conditioning, and “simultaneous 
conditioning”. For CS1, onset is at 2, offset at 6. Four separate versions of delay 
conditioning are presented, with four CSs, each four time units in duration, but 
with shifted onsets: CS2 onset = 3, offset = 7; CS3 onset = 4, offset = 8; CS4 onset = 5, 
offset = 9; and CS5 onset = 6, offset = 10. In all cases, US onset is at 7 and US offset is 
at 9. US amplitude is 0.7 and amplitude of all CSs is 0.2. α, the decay rate constant, 
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Figure 4
The SDR model predicts higher synaptic weight asymptotes as the length of the CS increases (trials 1 through 
150). The model also accounts for extinction of the CR in the absence of the US (trials 151 through 300).
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is 0.4, and β, the learning rate constant, is 1.5.
 As expected, a synaptic weight (w1, w2, w3, w4, and w5 in fi gure 3) is shown 
to change more rapidly and approach a higher asymptote when its onset is closer 
to US onset. Each curve is S-shaped, corresponding to acquisition curves obtained 
in animal learning experiments. In the simulations, node output is clipped at a 
maximum (1.0). Different node output functions may be employed (for example, 
y = 1 – exp(–y)) without disturbing the basic relationships of the synaptic weight 
curves.
 Not only is the CS onset–US onset interval important, but the length of the CS 
also determines relative synaptic weight change differences. Figure 4 shows the 
same constants as before, except for the CSs: this time all CSs have onset at 4; CS1 
offset = 6, CS2 offset = 7, CS3 offset = 8, and CS4 offset = 9. Figure 4 also shows that 
the SDR model predicts extinction phenomena (trials 151–300).
 Figure 5 graphs the relationship between the synaptic weight asymptote and 
the decay rate constant, α.
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Figure 5
Relationship between weight asymptote and the decay rate α for various CS amplitudes, given a fi xed US.
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Figure 6
The SDR model’s predictions of second order conditioning. Note that during trials 151 through 300 the US is 
absent, and so the response to CS1 is undergoing extinction.

CS1

CS2

US

Trials
1..150

Trials
151..300



7

3.2. Second order conditioning

Figure 6 graphs the SDR model’s predictions about second order conditioning. 
During trials 1–150, CS1 is paired with the US, and the synaptic weight w1 rises. 
During trials 151–300, the US is removed and at the same time CS2 is introduced, 
with onset slightly preceding CS1 onset. CS1 therefore acts as US for CS2. Second 
order conditioning is rather weak and sometimes ephemeral, because CS1 is 
undergoing extinction; when w1 fi nally falls to its lower limit (0.1), CS2 begins to 
extinguish as well.

3.3 Blocking

Figure 7 graphs a simulation of the phenomenon of blocking. During the fi rst 150 
trials, CS1 is paired with the US, and the synaptic weight (w1) increases. During 
subsequent trials, a second stimulus, CS2 is compounded with CS1, and both are 
reinforced by the US. As expected, there is little, if any, gain in synaptic effi cacy in 
CS2, and only a small loss of effi cacy in CS1.

3.4 Compound conditioning and overshadowing

Figure 8 shows the SDR model in a compound conditioning experiment. Both CS1 
and CS2 are presented together. Notice that both w1 and w2 remain equal throughout 
when the amplitudes of CS1 and CS2 are equal, but the weights do not rise as high 
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Figure 7
The SDR model’s prediction of blocking. The second CS, introduced after the fi rst has been conditioned, gains 
almost no strength.
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Figure 8
Consistently with the Rescorla-Wagner model and empirical results, the SDR model predicts that two equally 
salient CSs presented simultaneously will generate equal CRs.

CS1

CS2

US

0

1

2

3

4

5

Trials

Synaptic
Weight

w1

w2

100

CS2

CS1

US

Figure 9
The SDR model’s prediction in a compound conditioning experiment when one CS is stronger than a second. The 
fi rst is said to overshadow the second.

as when a single CS is used, everything else being equal (for example, CS4 in fi gure 
3). When the amplitudes of the two CSs are different, the phenomenon is called 
overshadowing: a stronger — more salient — stimulus gains proportionally more 
synaptic effi cacy than (i.e., tends to overshadow) a weaker stimulus (fi gure 9).
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3.5 The Wagner-Saavedra experiment

Consider an experiment by Wagner and Saavedra (Rescorla and Wagner, 1972). 
Three groups of rabbits underwent slightly different conditioning regimens (on 
the eyelid nictitating membrane, wherein a CS such as a tone or a light is followed 
by a puff of air to the cornea — the US — which causes the membrane to close). 
On every other trial, each group received conditioning to the compound CS1 + CS2. 
(Assume equal salience of the two stimuli.) The three groups differed in what took 
place during the alternate trials. For group 1, CS2 was eliminated (i.e., conditioning 
continued with CS1 alone). For group 2, CS1, CS2 and US were absent (i.e., there 
was a rest period). And for group 3, CS1 was presented without the US (i.e., CS1 
underwent an extinction trial). The three groups were treated identically with 
respect to CS2, yet CS2 emerged with quite different properties. Figure 10 shows 
the SDR model’s predictions of the Wagner-Saavedra experiment. The results 
accord well with the results from animal learning experiments.
 Figure 11 shows the results of a similar experiment. In this case, CS1 is 
conditioned during the fi rst 150 trials. On the next 150 trials CS2 is introduced, but 
in addition, reinforcement trials with both CSs and the US are alternated with CS1 
extinction trials. As the graph makes clear, CS2 now tends more and more to be a 
better predictor of the US, and so CS1’s salience decreases.
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The SDR model’s predictions for the Wagner-Saavedra experiment.
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3.6 Temporal primacy effects

Empirical data from animal learning experiments indicate that the closer in time a 
CS is to the US onset, the more powerful the CS’s effects will be — i.e., the higher 
its asymptote, and the quicker it will approach that asymptote. Nevertheless, an 
earlier CS will eventually win out over a later CS, as fi gure 12 shows. The SDR 
model tends to reward the earliest predictor of the US. This temporal primacy 
effect can even undo the effects of blocking (fi gure 13) and overshadowing (fi gure 
14).

4. Limitations of the model

In animal learning experiments, as conditioning progresses, the CR begins to 
appear earlier in the interstimulus interval (ISI). And if a CR is acquired with a 
random mix of two different ISIs, the CR will eventually appear with two peaks. 
But there is no provision in temporal models of conditioning (of which the SDR 
model is one) to account for this. Instead, the SDR model produces a CR precisely 
at CS onset; the CR remains constant until CS offset.
 Nor does the SDR model take into account the frequency of conditioning trials, 
i.e., the intertrial interval (ITI). Long ITIs seem to promote more rapid conditioning 
(in terms of number of trials) than shorter ITIs. (Just why this phenomenon appears 
in animal learning experiments — and whether it is related to some kind of 
memory consolidation — is an interesting puzzle. The phenomenon also appears 
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Figure 11
After conditioning on CS1, CS2 is introduced on trials alternating with CS1 extinction trials. According to the SDR 
model, CS2 eventually becomes a better predictor of the US.
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Figure 12
The SDR model’s predictions about temporal primacy effects. CS1, being temporally closer to the US, will at fi rst 
gain more weight than an earlier CS. But CS2, as an earlier predictor of the US,  eventually dominates.
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Figure 13
The SDR model predicts that temporal primacy can undo the effects of blocking.
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Figure 14
The SDR model predicts that temporal primacy can undo the effects of overshadowing.

in instrumental conditioning.)
 Sutton and Barto (1990) point out a problem with Klopf-like models (and 
hence also the present SDR model) employing an eligibility trace which is initiated 
by CS onset, but which then proceeds independently of the CS: Changes in 
synaptic weight depend on changes in neuronal output (which may be caused by 
CS offset or US onset and offset). But extinction of CR occurs in the absence of the 
US, so in that case it is the CS offset which provides the negative change in output 
which causes the loss of synaptic effi cacy, depending on the eligibility curve at 
that moment. But for very long CSs, the eligibility curve will have approached 
zero (or some small minimum), and so the decrement in synaptic weight will 
approach zero, which is to say that the model predicts no (or at least extremely 
slow) extinction for very long CSs. Sutton and Barto say that “the empirical data 
currently available do not directly contradict this prediction, but they are not 
supportive of it” (p. 514).
 Nor does the present SDR model account for reacquisition effects or 
spontaneous recovery (of CR following extinction). The SDR model might be 
made to accommodate spontaneous recovery by positing (at least for some units, 
if not for all) a tonic response level, such that in the absence of any conditioning, 
responses will tend to rise to that level over time, even after being forced below 
that level by extinction trials. Alternatively, inhibitory synapses might play a 
role.
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 There are some kinds of changes in responses which are traditionally discussed 
in animal learning texts, but which are not always said to participate in learning 
— or to be a part of the phenomena of associative learning. Muscle fatigue, for 
example, might be a cause of some behavioral changes during conditioning, but it 
is not clear that we ought to classify it as a kind of learning, although at the level 
of the neuron there may be some kind of fatigue as well. (There is, for example, 
a limiting rate at which a reuron can fi re; the SDR model acknowledges this by 
assigning the value of 1.0 to an SDR unit’s limit.)
 Sensitization is said to occur when an input stimulus of small amplitude 
produces a greater than normal response — or a response where before there was 
none. The SDR model does not account for this.
 Habituation is said to occur when an organism ceases to respond to a stimulus 
repeated monotonously — the animal “gets used to it”. But it is not always said to 
participate in associative learning, even though it might be classifi ed as a response 
undergoing extinction; in fact, it shares some of the features of conditioning, 
including spontaneous recovery (Bower & Hilgard, 1981). Aparicio & Strong 
(1992) suggest that habituation is integral to any complete model of Pavlovian 
conditioning, but, unfortunately, it is too often neglected.
 SDR units share some features with perceptrons and other simple learning 
devices, namely, they are limited in their ability to distinguish input stimuli (and, 
hence, limited in their ability to selectively respond). One-layer perceptrons, for 
example, are incapable of solving the exclusive-OR problem. A network with 
more than one layer presents opportunities for more complex discrimination, 
provided the credit assignment problem  — how to change synaptic weights in an 
earlier layer so as to produce the required output of a subsequent layer — can be 
solved (for example, by back propagation).
 SDR units, as I have been using them, are one-layer devices, and therefore 
can be expected to fail exclusive-OR type problems. Consequently, multi-layered 
networks of SDR units ought to be thoroughly investigated. 
 I have presented experiments with the SDR model using only positive 
(excitatory) synaptic weights. Yet the SDR model allows for negative (inhibitory) 
weights as well. Equation (2) bears repeating here:

 ei(t) = αei(t–1) + |wi(t–1)| min[0, ∆xi(t–1)] (2)

In addition, the model specifi es that 0 < WMIN ≤ |wi|, which is to say that 
weights do not cross zero; excitatory weights remain excitatory, and inhibitory 
weights remain inhibitory.
 What changes in an SDR unit’s behavior will occur if we add an inhibitory 
synapse for each excitatory synapse? (See fi gure 15.) Weight increases occur on the 
rising edge of the output (following a positive change in input). Weight decreases 
occur only on the falling edge of the output (following a positive change in input). 
But the falling edge is temporally farther than the rising edge from the positive 
input change. Consequently, inhibitory synaptic weights will gain effi cacy slower 
than excitatory weights, as shown in fi gure 16.
 Even greater changes in both excitatory and inhibitory synapses are possible if 
negative USs are allowed. But since the amplitude of a stimulus is a representation 
of its fi ring rate, it is not clear how there could be negative rates. So we might 
suppose instead that there is some level other than zero for inactive USs. Perhaps 
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the inactive US value is 0.5, excitatory (reward) USs range from 0.5 to 1, and 
inhibitory (aversive) USs range from 0 to 0.5. Or, equivalently, let there be a tonic 
level of an SDR unit’s activity, such that 0 < tonic < 1, and the unit’s output is tonic 
when there is no input. This would allow for both positive and negative USs.
 All the classical conditioning experiments discussed above ought to be 
repeated using the added inhibitory synapses to make sure that no behavior 
inconsistent with empirical results occurs.
 A threshold is sometimes added to artifi cial neural net models such that node 
activation below the threshold results in output of zero. Klopf (1986) explicitly 
provides for a threshold in his drive-reinforcement model, but then effectively 
discards it by giving its value as zero in his experiments.
 So far, nothing at all has been said of threshold values for the SDR model. 
Perhaps we might say that we have assumed its value to be zero. But suppose it 
is greater than zero. Might there be a mechanism for changing a threshold value? 

Figure 16
Excitatory and inhibitory synapse weights during acquisition and extinction.
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Figure 15
The SDR unit with both excitatory (arrow) and inhibitory (circle) synapses.
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What effect will that have on the classical conditioning experiments? Suppose 
an input stimulus is below the threshold and therefore produces no output. If 
subsequently the threshold is lowered, then what before was too weak to evoke 
a response will now produce a response. This may be part of what occurs in 
sensitization.
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